Skip to main content

Kallikrein 8-Dependent and Independent Synaptic Tagging and Modulation of Long-Term Potentiation: A Quest for the Associated Signaling Pathway(s)

  • Chapter
  • First Online:
Synaptic Tagging and Capture

Abstract

Synaptic tagging is a plausible hypothesis to explain relational memory. However, why and how the tagged synapses can be distinguished from other nonactivated synapses has not yet been clarified. Early-phase long-term potentiation (E-LTP)-related signaling molecules and intracellular molecular trafficking for capturing these toward tagged synapses have been considered essential for the synaptic tagging apparatus. In this chapter, we describe a new mechanism of synaptic tagging that shares the same set of E-LTP induction mechanisms as above; that is, E-LTP-specific proteolysis by Kallikrein 8/neuropsin (KLK8), an extracellular serine protease, is involved in the KLK8-dependent form of synaptic and behavioral tagging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88:615–626

    Article  CAS  PubMed  Google Scholar 

  • Abeliovich A, Chen C, Goda Y, Silva AJ, Stevens CF, Tonegawa S (1993a) Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Abeliovich A, Paylor R, Chen C, Kim JJ, Wehner JM, Tonegawa S (1993b) PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Andersson RH, Johnston A, Herman PA, Winzer-Serhan UH, Karavanova I, Vullhorst D, Fisahn A, Buonanno A (2012) Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors. Proc Natl Acad Sci USA 109:1–6

    Article  Google Scholar 

  • Attwood BK, Bourgognon J-M, Patel S, Mucha M, Schiavon E, Skrzypiec AE, Young KW, Shiosaka S, Korostynski M, Piechota M, Przewlocki R, Pawlak R (2011) Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature 473:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blitzer RD, Wong T, Nouranifar R, Iyengar R, Landau EM (1995) Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15:1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Borroni AM, Fichtenholtz H, Woodside BL, Teyler TJ (2000) Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory. J Neurosci 20:9272–9276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandon EP, Zhuo M, Huang YY, Qi M, Gerhold KA, Burton KA, Kandel ER, McKnight GS, Idzerda RL (1995) Hippocampal long-term depression and depotentiation are defective in mice carrying a targeted disruption of the gene encoding the RI beta subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA 92:8851–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavuş I, Teyler T (1996) Two forms of long-term potentiation in area CA1 activate different signal transduction cascades. J Neurophysiol 76:3038–3047

    Article  PubMed  Google Scholar 

  • Chan C-S, Weeber EJ, Kurup S, Sweatt JD, Davis RL (2003) Integrin requirement for hippocampal synaptic plasticity and spatial memory. J Neurosci 23:7107–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan C-S, Weeber EJ, Zong L, Fuchs E, Sweatt JD, Davis RL (2006) Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. J Neurosci 26:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan C-S, Levenson JM, Mukhopadhyay PS, Zong L, Bradley A, Sweatt JD, Davis RL (2007) Alpha3-integrins are required for hippocampal long-term potentiation and working memory. Learn Mem 14:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan C-S, Chen H, Bradley A, Dragatsis I, Rosenmund C, Davis RL (2010) 8-integrins are required for hippocampal long-term potentiation but not for hippocampal-dependent learning. Genes Brain Behav 9:402–410

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-L, Kato K, Momota Y, Suzuki J, Tanaka T, Ito J, Nishino H, Aimoto S, Kiyama H, Shiosaka S (1995) Expression and activity-dependent changes of a novel limbic-serine protease gene in the hippocampus. J Neurosci 75:5088–5097

    Article  Google Scholar 

  • Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Kearns IR, Ure J, Davies CH, Lathe R (2001) Loss of hippocampal serine protease BSP1/neuropsin predisposes to global seizure activity. J Neurosci 21:6993–7000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Feng L, Zaitsev E, Je H-S, Liu X-W, Lu B (2003) Regulation of TrkB receptor tyrosine kinase and its internalization by neuronal activity and Ca2+ influx. J Cell Biol 163:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisahn A, Neddens J, Yan L, Buonanno A (2009) Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cereb Cortex 19:612–618

    Article  PubMed  Google Scholar 

  • Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–1664

    Article  CAS  PubMed  Google Scholar 

  • Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279:870–873

    Article  CAS  PubMed  Google Scholar 

  • Goh JJ, Manahan-Vaughan D (2013) Spatial object recognition enables endogenous LTD that curtails LTP in the mouse hippocampus. Cereb Cortex 23(5):1118–1125. https://doi.org/10.1093/cercor/bhs089

    Article  PubMed  Google Scholar 

  • Granado N, Ortiz O, Suárez L (2008) D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP-induced arc and zif268 expression in the hippocampus. Cereb Cortex 18:1–12

    Article  PubMed  Google Scholar 

  • Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903–1910

    Article  CAS  PubMed  Google Scholar 

  • Grover LM, Teyler TJ (1990) Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347:477–479

    Article  CAS  PubMed  Google Scholar 

  • Grunwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp HP, Bonhoeffer T, Klein R (2001) Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32:1027–1040

    Article  CAS  PubMed  Google Scholar 

  • Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC, Pawson T (2001) The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32:1041–1056

    Article  CAS  PubMed  Google Scholar 

  • Herwerth M, Jensen V, Novak M, Konopka W, Hvalby O, Köhr G (2011) D4 dopamine receptors modulate NR2B NMDA receptors and LTP in stratum oriens of hippocampal CA1. Cereb Cortex 22:1–13

    Google Scholar 

  • Hinds HL, Tonegawa S, Malinow R (1998) CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice. Learn Mem 5:344–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata A, Yoshida S, Inoue N, Matsumoto-Miyai K, Ninomiya A, Taniguchi M, Matsuyama T, Kato K, Iizasa H, Kataoka Y, Yoshida N, Shiosaka S (2001) Abnormalities of synapses and neurons in the hippocampus of neuropsin-deficient mice. Mol Cell Neurosci 17:600–610

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Kandel ER (1994) Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn Mem 1:74–82

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Kandel ER (1995) D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci USA 92:2446–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K-P, Huang FL, Jäger T, Li J, Reymann KG, Balschun D (2004) Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci 24:10660–10669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T, McDonough CB, Abel T (2006a) Compartmentalized PKA signaling events are required for synaptic tagging and capture during hippocampal late-phase long-term potentiation. Eur J Cell Biol 85:635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Shimazu K, Woo NH, Zang K, Müller U, Lu B, Reichardt LF (2006b) Distinct roles of the beta 1-class integrins at the developing and the mature hippocampal excitatory synapse. J Neurosci 26:11208–11219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa Y, Horii Y, Tamura H, Shiosaka S (2008) Neuropsin (KLK8)-dependent and -independent synaptic tagging in the Schaffer-collateral pathway of mouse hippocampus. J Neurosci 28:843–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa Y, Tamura H, Shiosaka S (2011) Diversity of neuropsin (KLK8)-dependent synaptic associativity in the hippocampal pyramidal neuron. J Physiol 589:3559–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Pang PT, Feng L, Lu B (2005) Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat Neurosci 8:164–172

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Welcher AA, Shelton D, Schuman EM (1997) Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19:653–664

    Article  CAS  PubMed  Google Scholar 

  • Kojima N, Wang J, Mansuy IM, Grant SGN, Mayford M, Kandel ER (1997) Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proc Natl Acad Sci USA 94:4761–4765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komai S, Matsuyama T, Matsumoto K, Kato K, Kobayashi M, Imamura K, Yoshida S, Ugawa S, Shiosaka S (2000) Neuropsin regulates an early phase of schaffer-collateral long-term potentiation in the murine hippocampus. Eur J Neurosci 12:1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJC, O���Carroll CM, Martin SJ, Morris RGM, O’Dell TJ, Grant SGN (2002) SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22:9721–9732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92:8856–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte M, Griesbeck O, Gravel C, Carroll P, Staiger V, Thoenen H, Bonhoeffer T (1996) Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc Natl Acad Sci USA 93:12547–12552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte M, Kang H, Bonhoeffer T, Schuman E (1998) A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37:553–559

    Article  CAS  PubMed  Google Scholar 

  • Kramár EA, Lin B, Rex CS, Gall CM, Lynch G (2006) Integrin-driven actin polymerization consolidates long-term potentiation. Proc Natl Acad Sci USA 103:5579–5584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26:7723–7729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman J (2003) Long-term potentiation: outstanding questions and attempted synthesis. Philos Trans R Soc Lond Ser B Biol Sci 358:829–842

    Article  CAS  Google Scholar 

  • Lu Y, Ji Y, Ganesan S, Schloesser R, Martinowich K, Sun M, Mei F, Chao MV, Lu B (2011) TrkB as a potential synaptic and behavioral tag. J Neurosci 31:11762–11771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde Y-A (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11:131–133

    Article  CAS  PubMed  Google Scholar 

  • McKinney BC, Murphy GG (2006) The L-Type voltage-gated calcium channel Cav1.3 mediates consolidation, but not extinction, of contextually conditioned fear in mice. Learn Mem 13:584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, Jia Z (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35:121–133

    Article  CAS  PubMed  Google Scholar 

  • Minichiello L, Korte M, Wolfer D, Kühn R, Unsicker K, Cestari V, Rossi-Arnaud C, Lipp HP, Bonhoeffer T, Klein R (1999) Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24:401–414

    Article  CAS  PubMed  Google Scholar 

  • Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137

    Article  CAS  PubMed  Google Scholar 

  • Mockett BG, Brooks WM, Tate WP, Abraham WC (2004) Dopamine D1/D5 receptor activation fails to initiate an activity-independent late-phase LTP in rat hippocampus. Brain Res 1021:92–100

    Article  CAS  PubMed  Google Scholar 

  • Moosmang S, Haider N, Klugbauer N, Adelsberger H, Langwieser N, Müller J, Stiess M, Marais E, Schulla V, Lacinova L, Goebbels S, Nave K-A, Storm DR, Hofmann F, Kleppisch T (2005) Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci 25:9883–9892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller D, Djebbara-Hannas Z, Jourdain P, Vutskits L, Durbec P, Rougon G, Kiss JZ (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci USA 97:4315–4320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navakkode S, Sajikumar S, Frey JU (2005) Mitogen-activated protein kinase-mediated reinforcement of hippocampal early long-term depression by the type IV-specific phosphodiesterase inhibitor rolipram and its effect on synaptic tagging. J Neurosci 25:10664–10670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K, Bosch M, Hayashi Y (2009) The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda) 24:357–366

    CAS  PubMed  Google Scholar 

  • Otmakhova NA, Lisman JE (1996) D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J Neurosci 16:7478–7486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otmakhova NA, Otmakhov N, Mortenson LH, Lisman JE (2000) Inhibition of the cAMP pathway decreases early long-term potentiation at CA1 hippocampal synapses. J Neurosci 20:4446–4451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung W-H, Hempstead BL, Lu B (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487–491

    Article  CAS  PubMed  Google Scholar 

  • Patterson SL, Abel T, Deuel TAS, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Pentassuglia L, Sawyer DB (2013) ErbB/integrin signaling interactions in regulation of myocardial cell–cell and cell–matrix interactions. Biochimica Biophys Acta (BBA) – Mol Cell Res 1833(4):909–916. https://doi.org/10.1016/j.bbamcr.2012.12.007

    Article  CAS  Google Scholar 

  • Pozzo-Miller LD, Gottschalk W, Zhang L, McDermott K, Du J, Gopalakrishnan R, Oho C, Sheng ZH, Lu B (1999) Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J Neurosci 19:4972–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi M, Zhuo M, Skålhegg BS, Brandon EP, Kandel ER, McKnight GS, Idzerda RL (1996) Impaired hippocampal plasticity in mice lacking the Cbeta1 catalytic subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA 93:1571–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RGM (2010) Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30:4981–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghatelyan AK, Dityatev A, Schmidt S, Schuster T, Bartsch U, Schachner M (2001) Reduced perisomatic inhibition, increased excitatory transmission, and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci 17:226–240

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Navakkode S, Frey JU (2007) Identification of compartment- and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in hippocampal CA1. J Neurosci 27:5068–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidah NG, Benjannet S, Pareek S, Chrétien M, Murphy RA (1996) Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett 379:247–250

    Article  CAS  PubMed  Google Scholar 

  • Senkov O, Sun M, Weinhold B, Gerardy-Schahn R, Schachner M, Dityatev A (2006) Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm. J Neurosci 26:10888–109898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiosaka S (2022) Kallikrein 8: a key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 140:104774. https://doi.org/10.1016/j.neubiorev.2022.104774

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992a) Impaired spatial-learning in alpha-calcium-calmodulin kinase-II mutant mice. Science 257:206–211

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992b) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257:201–206

    Article  CAS  PubMed  Google Scholar 

  • Stäubli U, Chun D, Lynch G (1998) Time-dependent reversal of long-term potentiation by an integrin antagonist. J Neurosci 18:3460–3469

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Yoda Y, Ishikawa Y (2021) Neuropsin-dependent and -independent behavioral tagging. Neuropsychopharmacol Rep 41(2):215–222. https://doi.org/10.1002/npr2.12177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasu MA, Dalva MB, Zigmond RE, Greenberg ME (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295:491–495

    Article  CAS  PubMed  Google Scholar 

  • Tamura H, Ishikawa Y, Hino N, Maeda M, Yoshida S, Kaku S, Shiosaka S (2006) Neuropsin is essential for early processes of memory acquisition and Schaffer collateral long-term potentiation in adult mouse hippocampus in vivo. J Physiol 570:541–551

    Article  CAS  PubMed  Google Scholar 

  • Tamura H, Kawata M, Hamaguchi S, Ishikawa Y, Shiosaka S (2012) Processing of neuregulin-1 by neuropsin regulates GABAergic neuron to control neural plasticity of the mouse hippocampus. J Neurosci 32:12657–12672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uetani N, Kato K, Ogura H, Mizuno K, Kawano K, Mikoshiba K, Yakura H, Asano M, Iwakura Y (2000) Impaired learning with enhanced hippocampal long-term potentiation in PTPδ-deficient mice. EMBO J 19:2775–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertes RP (2005) Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 15:923–935

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097. https://doi.org/10.1126/science.1128134

    Article  CAS  PubMed  Google Scholar 

  • Winder DG, Mansuy IM, Osman M, Moallem TM, Kandel ER (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92:25–37

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Gottschalk W, Chow A, Wilson RI, Schnell E, Zang K, Wang D, Nicoll RA, Lu B, Reichardt LF (2000) The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J Neurosci 20:6888–6897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, Y., Shiosaka, S. (2024). Kallikrein 8-Dependent and Independent Synaptic Tagging and Modulation of Long-Term Potentiation: A Quest for the Associated Signaling Pathway(s). In: Sajikumar, S., Abel, T. (eds) Synaptic Tagging and Capture. Springer, Cham. https://doi.org/10.1007/978-3-031-54864-2_9

Download citation

Publish with us

Policies and ethics