Skip to main content

Synaptic Cooperation and Competition: Two Sides of the Same Coin?

  • Chapter
  • First Online:
Synaptic Tagging and Capture
  • 106 Accesses

Abstract

Memories are not recollections of our past but rather predictions of the future. As such, memories are evolving constructs prone to modifications. For example, when you eat a candy bar, you expect it to be good based on previous experience. When it is bad, the brain is faced with a conflict and the necessity of revision. Different outcomes are possible: a new association of candy bar-bad can be formed; the previous association can be updated to candy bars are sometimes good and sometimes bad; or simply the horrible encounter with a bad candy bar is forgotten. This example illustrates that every new episode is integrated with previous information and does not stand alone, implying that all events are, to some degree, interacting with previously acquired memories. The rules that determine whether memories are associated, by cooperation, or selected and lost, by competition, are completely unknown. Neuronal circuits are intrinsically plastic, and the plasticity of neuronal synapses underlies the storage of information as memories. At the cellular level, the synaptic tagging and capture (STC) theory states that the maintenance of activity-dependent synaptic changes is based on the interaction between synaptic-specific tags and the capture of plasticity-related proteins. The STC has provided a solid framework to account for the input specificity of synaptic plasticity but also provides a working model to understand the heterosynaptic interaction between different groups of synapses, such as synaptic cooperation and competition. In this chapter, I will discuss the evidence regarding the cooperative and competitive interactions between different groups of synapses. In particular, I will address the properties of synaptic cooperation and competition that contribute to the refinement of neuronal connections during development. Later, I will address the evidence that similar rules operate during the induction and maintenance of synaptic plasticity and how these rules influence the acquisition and maintenance of long-term memories. Further understanding of the cellular rules underlying cooperative and competitive interactions between synapses will allow us to dissect the rules underlying associative learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcon JM, Barco A, Kandel ER (2006) Capture of the late phase of long-term potentiation within and across the apical and basilar dendritic compartments of CA1 pyramidal neurons: synaptic tagging is compartment restricted. J Neurosci 26:256–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes R, Moita MA (2010) Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala. J Neurosci 30:9782–9787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballarini F, Moncada D, Martinez MC, Alen N, Viola H (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci 106:14599–14604. https://doi.org/10.1073/pnas.0907078106

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar IL, Gidon A, Segev I (2011) Interregional synaptic competition in neurons with multiple STDP-inducing signals. J Neurophysiol 105:989–998

    Article  Google Scholar 

  • Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    Article  CAS  PubMed  Google Scholar 

  • Becker N, Wierenga CJ, Fonseca R, Bonhoeffer T, Nagerl UV (2008) LTD induction causes morphological changes of presynaptic boutons and reduces their contacts with spines. Neuron 60:590–597

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL, Morris RG (2003) Introduction. Long-term potentiation and structure of the issue. Philos Trans R Soc Lond Ser B Biol Sci 358:607–611

    Article  Google Scholar 

  • Bramham CR (2008) Local protein synthesis, actin dynamics, and LTP consolidation. Curr Opin Neurobiol 18:524–531

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K (2010) The Arc of synaptic memory. Exp Brain Res 200:125–140

    Article  PubMed  Google Scholar 

  • Buffelli M, Busetto G, Cangiano L, Cangiano A (2002) Perinatal switch from synchronous to asynchronous activity of motoneurons: link with synapse elimination. Proc Natl Acad Sci USA 99:13200–13205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buffelli M, Busetto G, Bidoia C, Favero M, Cangiano A (2004) Activity-dependent synaptic competition at mammalian neuromuscular junctions. News Physiol Sci 19:85–91

    PubMed  Google Scholar 

  • Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J, Flores SE, Kim I, Sano Y, Zhou M, Baumgaertel K, Lavi A, Kamata M, Tuszynski M, Mayford M, Golshani P, Silva AJ (2016) A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534:115–118. https://doi.org/10.1038/nature17955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campeau S, Davis M (1995) Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 15:2312–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman H, Lichtman JW (1992) ‘Cartellian’ competition at the neuromuscular junction. Trends Neurosci 15:197–199

    Article  CAS  PubMed  Google Scholar 

  • Colman H, Nabekura J, Lichtman JW (1997) Alterations in synaptic strength preceding axon withdrawal. Science 275:356–361

    Article  CAS  PubMed  Google Scholar 

  • Darabid H, Arbour D, Robitaille R (2013) Glial cells decipher synaptic competition at the mammalian neuromuscular junction. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2935-12.2013

  • Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284:26655–26665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin–proteasome system. Nat Neurosci 6:231–242

    Article  CAS  PubMed  Google Scholar 

  • Fonseca R (2012) Activity-dependent actin dynamics are required for the maintenance of long-term plasticity and for synaptic capture. Eur J Neurosci 35:195–206

    Article  PubMed  Google Scholar 

  • Fonseca R (2013) Asymmetrical synaptic cooperation between cortical and thalamic inputs to the amygdale. Neuropsychopharmacology 38:2675–2687

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca R, Nagerl UV, Morris RG, Bonhoeffer T (2004) Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44:1011–1020

    CAS  PubMed  Google Scholar 

  • Fonseca R, Nagerl UV, Bonhoeffer T (2006a) Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nat Neurosci 9:478–480

    Article  CAS  PubMed  Google Scholar 

  • Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nagerl UV (2006b) A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52:239–245

    Article  CAS  PubMed  Google Scholar 

  • Frey S, Frey JU (2008) ‘Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog Brain Res 169:117–143

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Morris RG (1998a) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21:181–188

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Morris RG (1998b) Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37:545–552

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Krug M, Reymann KG, Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452:57–65

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Letzkus JJ, Kampa BM, Hang GB, Stuart GJ (2010) Dendritic synapse location and neocortical spike-timing-dependent plasticity. Front Synaptic Neurosci 2:29

    PubMed  PubMed Central  Google Scholar 

  • Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7:575–583

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan A, Israely I, Huang SY, Tonegawa S (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69:132–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J-H, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science (80-.) 316:457–460. https://doi.org/10.1126/science.1139438

    Article  CAS  Google Scholar 

  • Han JH, Yiu AP, Cole CJ, Hsiang HL, Neve RL, Josselyn SA (2008) Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn Mem 15:443–453. https://doi.org/10.1101/lm.993608

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Ichikawa R, Kitamura K, Watanabe M, Kano M (2009) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63:106–118

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO (1949) Organization of behaviour. Wiley, New York

    Google Scholar 

  • Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, Simmons L, Moffet B, Vandlen RA, Simpson LC, [corrected to Simmons L] et al (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266:1062–1064

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Nguyen PV, Abel T, Kandel ER (1996) Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn Mem 3:74–85

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond Ser B Biol Sci 278:377–409

    CAS  Google Scholar 

  • Kauer JA, Malenka RC, Perkel DJ, Nicoll RA (1990) Postsynaptic mechanisms involved in long-term potentiation. Adv Exp Med Biol 268:291–299

    Article  CAS  PubMed  Google Scholar 

  • Kelleher RJ III, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    Article  CAS  PubMed  Google Scholar 

  • Ko CP, Robitaille R (2015) Perisynaptic schwann cells at the neuromuscular synapse: adaptable, multitasking glial cells. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a020503

  • Kwon JT, Choi JS (2009) Cornering the fear engram: long-term synaptic changes in the lateral nucleus of the amygdala after fear conditioning. J Neurosci 29:9700–9703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanuza MA, Tomàs J, Garcia N, Cilleros-Mañé V, Just-Borràs L, Tomàs M (2018) Axonal competition and synapse elimination during neuromuscular junction development. Curr Opin Physiol. https://doi.org/10.1016/j.cophys.2018.04.001

  • Laskowski MB, Sanes JR (1987) Topographic mapping of motor pools onto skeletal muscles. J Neurosci 7:252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski MB, Colman H, Nelson C, Lichtman JW (1998) Synaptic competition during the reformation of a neuromuscular map. J Neurosci 18:7328–7335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman J, Malenka RC, Nicoll RA, Malinow R (1997) Learning mechanisms: the case for CaM-KII. Science 276:2001–2002

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fields RD, Festoff BW, Nelson PG (1994a) Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction. Proc Natl Acad Sci USA 91:10300–10304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Fields RD, Fitzgerald S, Festoff BW, Nelson PG (1994b) Proteolytic activity, synapse elimination, and the Hebb synapse. J Neurobiol 25:325–335

    Article  CAS  PubMed  Google Scholar 

  • Lo YJ, Poo MM (1991) Activity-dependent synaptic competition in vitro: heterosynaptic suppression of developing synapses. Science 254:1019–1022

    Article  CAS  PubMed  Google Scholar 

  • Madeira N, Drumond A, Fonseca R (2020) Temporal gating of synaptic competition in the amygdala by cannabinoid receptor activation. Cereb Cortex. https://doi.org/10.1093/cercor/bhaa026

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1997) Learning and memory. Never fear, LTP is hear. Nature 390:552–553

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1998) Long-term depression with a flash. Nat Neurosci 1:89–90

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation—a decade of progress? Science 285:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Mehta MR (2004) Cooperative LTP can map memory sequences on dendritic branches. Trends Neurosci 27:69–72

    Article  CAS  PubMed  Google Scholar 

  • Miller KD (1996) Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17:371–374

    Article  CAS  PubMed  Google Scholar 

  • Moncada D, Viola H (2007) Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J Neurosci 27:7476–7481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncada D, Ballarini F, Martinez MC, Frey JU, Viola H (2011) Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proc Natl Acad Sci USA 108:12931–12936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson MD, Meyer RL (1994) Activity-dependent retinotopic refinement in a low-density retinotectal projection in the goldfish: evidence favoring synaptic cooperation over competition. J Neurosci 14:208–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Personius KE, Karnes JL, Parker SD (2008) NMDA receptor blockade maintains correlated motor neuron firing and delays synapse competition at developing neuromuscular junctions. J Neurosci 28:8983–8992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid AJ, Yan C, Mercaldo V, Hsiang H-L, Park S, Cole CJ, De Cristofaro A, Yu J, Ramakrishnan C, Lee SY, Deisseroth K, Frankland PW, Josselyn SA (2016) Competition between engrams influences fear memory formation and recall. Science 80-. ). 353:383–387. https://doi.org/10.1126/science.aaf0594

    Article  CAS  Google Scholar 

  • Redondo RL, Morris RG (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12:17–30

    Article  CAS  PubMed  Google Scholar 

  • Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RG (2010) Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30:4981–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Frey JU (2004a) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem 82:12–25

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Frey JU (2004b) Resetting of ‘synaptic tags’ is time- and activity-dependent in rat hippocampal CA1 in vitro. Neuroscience 129:503–507

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Navakkode S, Sacktor TC, Frey JU (2005) Synaptic tagging and cross-tagging: the role of protein kinase Mzeta in maintaining long-term potentiation but not long-term depression. J Neurosci 25:5750–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Navakkode S, Frey JU (2007) Identification of compartment- and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in hippocampal CA1. J Neurosci 27:5068–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanhueza M, Lisman J (2013) The CaMKII/NMDAR complex as a molecular memory. Mol Brain 6:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanhueza M, Fernandez-Villalobos G, Stein IS, Kasumova G, Zhang P, Bayer KU, Otmakhov N, Hell JW, Lisman J (2011) Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength. J Neurosci 31:9170–9178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith IW, Mikesh M, Lee YI, Thompson WJ (2013) Terminal Schwann cells participate in the competition underlying neuromuscular synapse elimination. J Neurosci. https://doi.org/10.1523/JNEUROSCI.3339-13.2013

  • Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32:339–350

    Article  CAS  PubMed  Google Scholar 

  • Stent GS (1973) A physiological mechanism for Hebb’s postulate of learning. Proc Natl Acad Sci USA 70:997–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumislawski JJ, Ramikie TS, Patel S (2011) Reversible gating of endocannabinoid plasticity in the amygdala by chronic stress: a potential role for monoacylglycerol lipase inhibition in the prevention of stress-induced behavioral adaptation. Neuropsychopharmacology 36:2750–2761. https://doi.org/10.1038/npp.2011.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101–109. https://doi.org/10.1016/j.conb.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Turney SG, Lichtman JW (2012) Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: evidence for synaptic competition and its mechanism. PLoS Biol 10:e1001352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Essen DC, Gordon H, Soha JM, Fraser SE (1990) Synaptic dynamics at the neuromuscular junction: mechanisms and models. J Neurobiol 21:223–249

    Article  PubMed  Google Scholar 

  • van Ooyen A (2001) Competition in the development of nerve connections: a review of models. Network 12:R1–R47

    Article  PubMed  Google Scholar 

  • Walsh MK, Lichtman JW (2003) In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37:67–73

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Redondo RL, Morris RG (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci USA 107:19537–19542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wikstrom MA, Matthews P, Roberts D, Collingridge GL, Bortolotto ZA (2003) Parallel kinase cascades are involved in the induction of LTP at hippocampal CA1 synapses. Neuropharmacology 45:828–836

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Matheson C, Lopez OT (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373:341–344

    Article  CAS  PubMed  Google Scholar 

  • Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang H-LL, Pressey J, Mahadevan V, Tran MM, Kushner SA, Woodin MA, Frankland PW, Josselyn SA (2014) Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83:722–735. https://doi.org/10.1016/j.neuron.2014.07.017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalina Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fonseca, R. (2024). Synaptic Cooperation and Competition: Two Sides of the Same Coin?. In: Sajikumar, S., Abel, T. (eds) Synaptic Tagging and Capture. Springer, Cham. https://doi.org/10.1007/978-3-031-54864-2_8

Download citation

Publish with us

Policies and ethics