Skip to main content

Compartmentalization of Synaptic Tagging and Capture

  • Chapter
  • First Online:
Synaptic Tagging and Capture
  • 100 Accesses

Abstract

Testing of the synaptic tagging and capture (STC) hypothesis has produced remarkable work on the understanding of how a single neuron undergoes spatial and temporal encoding of information. Central to this work is the notion that STC processes can be compartment specific. Formed by activation of synaptic plasticity mechanisms and extending along confined dendritic domains, these compartments can work as the neuron’s information integration units. The association or dismissal of incoming information would depend on the plasticity-driven functional state of the compartment. With multiple streams of neural activity arriving at distinct synapses in a neuron, compartmentalization emerges as a key strategy to organize this information and enhance the neuron’s computing capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakalu G, Smith WB, Nguyen N, Jiang C, Schuman EM (2001) Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30:489–502

    Article  CAS  PubMed  Google Scholar 

  • Abraham WC, Christie BR, Logan B, Lawlor P, Dragunow M (1994) Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci USA 91:10049–10053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams JP, Dudek SM (2005) Late-phase long-term potentiation: getting to the nucleus. Nat Rev Neurosci 6:737–743

    Article  CAS  PubMed  Google Scholar 

  • Alarcon JM, Barco A, Kandel ER (2006) Capture of the late phase of long-term potentiation within and across the apical and basilar dendritic compartments of CA1 pyramidal neurons: synaptic tagging is compartment restricted. J Neurosci 26:256–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  CAS  PubMed  Google Scholar 

  • Arai A, Black J, Lynch G (1994) Origins of the variations in long-term potentiation between synapses in the basal versus apical dendrites of hippocampal neurons. Hippocampus 4:1–9

    Article  CAS  PubMed  Google Scholar 

  • Atallah BV, Scanziani M (2009) Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62:566–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banko JL, Poulin F, Hou L, DeMaria CT, Sonenberg N, Klann E (2005) The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J Neurosci 25:9581–9590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banko JL, Hou L, Poulin F, Sonenberg N, Klann E (2006) Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J Neurosci 26:2167–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banko JL, Merhav M, Stern E, Sonenberg N, Rosenblum K, Klann E (2007) Behavioral alterations in mice lacking the translation repressor 4E-BP2. Neurobiol Learn Mem 87:248–256

    Article  CAS  PubMed  Google Scholar 

  • Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703

    Article  CAS  PubMed  Google Scholar 

  • Bastiaansen MC, van Berkum JJ, Hagoort P (2002) Syntactic processing modulates the theta rhythm of the human EEG. NeuroImage 17:1479–1492

    Article  PubMed  Google Scholar 

  • Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal–prefrontal network upon learning. Neuron 66:921–936

    Article  CAS  PubMed  Google Scholar 

  • Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Broome BM, Jayaraman V, Laurent G (2006) Encoding and decoding of overlapping odor sequences. Neuron 51:467–482

    Article  CAS  PubMed  Google Scholar 

  • Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, Bailey CH, Kandel ER (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99:221–237

    Article  CAS  PubMed  Google Scholar 

  • Cavus I, Teyler TJ (1998) NMDA receptor-independent LTP in basal versus apical dendrites of CA1 pyramidal cells in rat hippocampal slice. Hippocampus 8:373–379

    Article  CAS  PubMed  Google Scholar 

  • Christie BR, Abraham WC (1994) L-type voltage-sensitive calcium channel antagonists block heterosynaptic long-term depression in the dentate gyrus of anaesthetized rats. Neurosci Lett 167:41–45

    Article  CAS  PubMed  Google Scholar 

  • Christie BR, Stellwagen D, Abraham WC (1995) Evidence for common expression mechanisms underlying heterosynaptic and associative long-term depression in the dentate gyrus. J Neurophysiol 74:1244–1247

    Article  CAS  PubMed  Google Scholar 

  • Colbran RJ, Brown AM (2004) Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr Opin Neurobiol 14:318–327

    Article  CAS  PubMed  Google Scholar 

  • Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357

    Article  CAS  PubMed  Google Scholar 

  • Colicos MA, Collins BE, Sailor MJ, Goda Y (2001) Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107:605–616

    Article  CAS  PubMed  Google Scholar 

  • Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, Bruno M, Bidinosti M, Ben Mamou C, Marcinkiewicz E, Yoshida M et al (2005) Translational control of hippocampal synaptic plasticity and memory by the eIF2alpha kinase GCN2. Nature 436:1166–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, Sossin W, Kaufman R, Pelletier J, Rosenblum K et al (2007) eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui-Wang T, Hanus C, Cui T, Helton T, Bourne J, Watson D, Harris KM, Ehlers MD (2012) Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell 148:309–321

    Article  CAS  Google Scholar 

  • Deuchars J, Thomson AM (1996) CA1 pyramid–pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74:1009–1018

    CAS  PubMed  Google Scholar 

  • Diamond DM, Park CR, Campbell AM, Woodson JC (2005) Competitive interactions between endogenous LTD and LTP in the hippocampus underlie the storage of emotional memories and stress-induced amnesia. Hippocampus 15:1006–1025

    Article  CAS  PubMed  Google Scholar 

  • Diba K, Buzsaki G (2008) Hippocampal network dynamics constrain the time lag between pyramidal cells across modified environments. J Neurosci 28:13448–13456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolleman-Van Der Weel MJ, Witter MP (1996) Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 364:637–650

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Green T, Saal D, Marie H, Neve R, Nestler EJ, Malenka RC (2006) CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci 9:475–477

    Article  CAS  PubMed  Google Scholar 

  • Dragoi G, Harris KD, Buzsaki G (2003) Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39:843–853

    Article  CAS  PubMed  Google Scholar 

  • Dudek SM, Fields RD (2002) Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc Natl Acad Sci USA 99:3962–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N (2008) Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci 28:11250–11262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzjohn SM, Collingridge GL (2002) Calcium stores and synaptic plasticity. Cell Calcium 32:405–411

    Article  CAS  PubMed  Google Scholar 

  • Fonseca R, Nagerl UV, Morris RG, Bonhoeffer T (2004) Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44:1011–1020

    CAS  PubMed  Google Scholar 

  • Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nagerl UV (2006) A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52:239–245

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385:533–536

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Morris RG (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21:181–188

    Article  CAS  PubMed  Google Scholar 

  • Frick A, Magee J, Johnston D (2004) LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 7:126–135

    Article  CAS  PubMed  Google Scholar 

  • Geisler C, Diba K, Pastalkova E, Mizuseki K, Royer S, Buzsaki G (2010) Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proc Natl Acad Sci USA 107:7957–7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giustetto M, Hegde AN, Si K, Casadio A, Inokuchi K, Pei W, Kandel ER, Schwartz JH (2003) Axonal transport of eukaryotic translation elongation factor 1alpha mRNA couples transcription in the nucleus to long-term facilitation at the synapse. Proc Natl Acad Sci USA 100:13680–13685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7:575–583

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan A, Israely I, Huang SY, Tonegawa S (2011) The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69:132–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haley JE, Schaible E, Pavlidis P, Murdock A, Madison DV (1996) Basal and apical synapses of CA1 pyramidal cells employ different LTP induction mechanisms. Learn Mem 3:289–295

    Article  CAS  PubMed  Google Scholar 

  • Han EB, Heinemann SF (2013) Distal dendritic inputs control neuronal activity by heterosynaptic potentiation of proximal inputs. J Neurosci 33:1314–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48:757–771

    Article  CAS  PubMed  Google Scholar 

  • Huang T, McDonough CB, Abel T (2006) Compartmentalized PKA signaling events are required for synaptic tagging and capture during hippocampal late-phase long-term potentiation. Eur J Cell Biol 85:635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulme SR, Jones OD, Abraham WC (2013) Emerging roles of metaplasticity in behaviour and disease. Trends Neurosci 36:353–362

    Article  CAS  PubMed  Google Scholar 

  • Irvine GI, Logan B, Eckert M, Abraham WC (2006) Enriched environment exposure regulates excitability, synaptic transmission, and LTP in the dentate gyrus of freely moving rats. Hippocampus 16:149–160

    Article  PubMed  Google Scholar 

  • Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295:580–623

    Article  CAS  PubMed  Google Scholar 

  • Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, Buzsaki G (2006) Integration and segregation of activity in entorhinal–hippocampal subregions by neocortical slow oscillations. Neuron 52:871–882

    Article  CAS  PubMed  Google Scholar 

  • Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8:1667–1676

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Christie BR, Frick A, Gray R, Hoffman DA, Schexnayder LK, Watanabe S, Yuan LL (2003) Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond Ser B Biol Sci 358:667–674

    Article  CAS  Google Scholar 

  • Jones MW, Wilson MA (2005) Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS Biol 3:e402

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–525

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I (2003) Asymmetrical allocation of NMDA receptor epsilon2 subunits in hippocampal circuitry. Science 300:990–994

    Article  CAS  PubMed  Google Scholar 

  • Kelleher RJ 3rd, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    Article  CAS  PubMed  Google Scholar 

  • Kiebler MA, Bassell GJ (2006) Neuronal RNA granules: movers and makers. Neuron 51:685–690

    Article  CAS  PubMed  Google Scholar 

  • Klann E, Dever TE (2004) Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci 5:931–942

    Article  CAS  PubMed  Google Scholar 

  • Kleindienst T, Winnubst J, Roth-Alpermann C, Bonhoeffer T, Lohmann C (2011) Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron 72:1012–1024

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman F, Peloquin P, Leung LS (2001) Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation. J Neurophysiol 86:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Kotz KJ, McNiven MA (1994) Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores. J Cell Biol 124:463–474

    Article  CAS  PubMed  Google Scholar 

  • Kramar EA, Lynch G (2003) Developmental and regional differences in the consolidation of long-term potentiation. Neuroscience 118:387–398

    Article  CAS  PubMed  Google Scholar 

  • Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CM (2009) Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol 7:e1000173

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee PR, Cohen JE, Becker KG, Fields RD (2005) Gene expression in the conversion of early-phase to late-phase long-term potentiation. Ann N Y Acad Sci 1048:259–271

    Article  CAS  PubMed  Google Scholar 

  • Leung LS, Shen B (1999) N-methyl-d-aspartate receptor antagonists are less effective in blocking long-term potentiation at apical than basal dendrites in hippocampal CA1 of awake rats. Hippocampus 9:617–630

    Article  CAS  PubMed  Google Scholar 

  • Levy WB, Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res 175:233–245

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S (2014) Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cereb Cortex 24(2):353–363

    Article  PubMed  Google Scholar 

  • Lopez de Armentia M, Jancic D, Olivares R, Alarcon JM, Kandel ER, Barco A (2007) cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J Neurosci 27:13909–13918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–635

    Article  CAS  PubMed  Google Scholar 

  • Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Johnston D (2005) Plasticity of dendritic function. Curr Opin Neurobiol 15:334–342

    Article  CAS  PubMed  Google Scholar 

  • Makara JK, Losonczy A, Wen Q, Magee JC (2009) Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. Nat Neurosci 12:1485–1487

    Article  CAS  PubMed  Google Scholar 

  • Makino H, Malinow R (2011) Compartmentalized versus global synaptic plasticity on dendrites controlled by experience. Neuron 72:1001–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Marder CP, Buonomano DV (2003) Differential effects of short- and long-term potentiation on cell firing in the CA1 region of the hippocampus. J Neurosci 23:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marie H, Morishita W, Yu X, Calakos N, Malenka RC (2005) Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45:741–752

    Article  CAS  PubMed  Google Scholar 

  • Martin KC, Kosik KS (2002) Synaptic tagging—who’s it? Nat Rev Neurosci 3:813–820

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Morris RG (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12:609–636

    Article  CAS  PubMed  Google Scholar 

  • Montgomery SM, Buzsaki G (2007) Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci USA 104:14495–14500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris RG (2006) Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur J Neurosci 23:2829–2846

    Article  CAS  PubMed  Google Scholar 

  • Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  • Nicholson DA, Trana R, Katz Y, Kath WL, Spruston N, Geinisman Y (2006) Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron 50:431–442

    Article  CAS  PubMed  Google Scholar 

  • Nie T, McDonough CB, Huang T, Nguyen PV, Abel T (2007) Genetic disruption of protein kinase A anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term potentiation and spatial memory. J Neurosci 27:10278–10288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588

    Article  CAS  PubMed  Google Scholar 

  • O’Neill J, Senior TJ, Allen K, Huxter JR, Csicsvari J (2008) Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nat Neurosci 11:209–215

    Article  PubMed  Google Scholar 

  • Ostroff LE, Fiala JC, Allwardt B, Harris KM (2002) Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35:535–545

    Article  CAS  PubMed  Google Scholar 

  • Pavlowsky A, Alarcon JM (2012) Interaction between long-term potentiation and depression in CA1 synapses: temporal constrains, functional compartmentalization and protein synthesis. PLoS One 7:e29865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A (1999) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403:229–260

    Article  CAS  PubMed  Google Scholar 

  • Purcell AL, Sharma SK, Bagnall MW, Sutton MA, Carew TJ (2003) Activation of a tyrosine kinase-MAPK cascade enhances the induction of long-term synaptic facilitation and long-term memory in Aplysia. Neuron 37:473–484

    Article  CAS  PubMed  Google Scholar 

  • Puthanveettil SV, Monje FJ, Miniaci MC, Choi YB, Karl KA, Khandros E, Gawinowicz MA, Sheetz MP, Kandel ER (2008) A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex. Cell 135:960–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond CR, Redman SJ (2002) Different calcium sources are narrowly tuned to the induction of different forms of LTP. J Neurophysiol 88:249–255

    Article  CAS  PubMed  Google Scholar 

  • Raymond CR, Redman SJ (2006) Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol 570:97–111

    Article  CAS  PubMed  Google Scholar 

  • Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40

    Article  CAS  PubMed  Google Scholar 

  • Richter JD (2001) Think globally, translate locally: what mitotic spindles and neuronal synapses have in common. Proc Natl Acad Sci USA 98:7069–7071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodionov V, Yi J, Kashina A, Oladipo A, Gross SP (2003) Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels. Curr Biol 13:1837–1847

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Frey JU (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem 82:12–25

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Korte M (2011a) Different compartments of apical CA1 dendrites have different plasticity thresholds for expressing synaptic tagging and capture. Learn Mem 18:327–331

    Article  PubMed  Google Scholar 

  • Sajikumar S, Korte M (2011b) Metaplasticity governs compartmentalization of synaptic tagging and capture through brain-derived neurotrophic factor (BDNF) and protein kinase Mzeta (PKMzeta). Proc Natl Acad Sci USA 108:2551–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Navakkode S, Sacktor TC, Frey JU (2005) Synaptic tagging and cross-tagging: the role of protein kinase Mzeta in maintaining long-term potentiation but not long-term depression. J Neurosci 25:5750–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Navakkode S, Frey JU (2007a) Identification of compartment- and process-specific molecules required for “synaptic tagging” during long-term potentiation and long-term depression in hippocampal CA1. J Neurosci 27:5068–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Navakkode S, Korz V, Frey JU (2007b) Cognitive and emotional information processing: protein synthesis versus gene expression. J Physiol 584(Pt 2):389–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Li Q, Abraham WC, Xiao ZC (2009) Priming of short-term potentiation and synaptic tagging/capture mechanisms by ryanodine receptor activation in rat hippocampal CA1. Learn Mem 16:178–186

    Article  PubMed  Google Scholar 

  • Sanchez C, Diaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61:133–168

    Article  CAS  PubMed  Google Scholar 

  • Schacher S, Wu F, Sun ZY (1997) Pathway-specific synaptic plasticity: activity-dependent enhancement and suppression of long-term heterosynaptic facilitation at converging inputs on a single target. J Neurosci 17:597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsaki G (2008) Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60:683–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjostrom PJ, Nelson SB (2002) Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 12:305–314

    Article  CAS  PubMed  Google Scholar 

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998) Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21:741–751

    Article  CAS  PubMed  Google Scholar 

  • Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127:49–58

    Article  CAS  PubMed  Google Scholar 

  • Thomas KL, Laroche S, Errington ML, Bliss TV, Hunt SP (1994) Spatial and temporal changes in signal transduction pathways during LTP. Neuron 13:737–745

    Article  CAS  PubMed  Google Scholar 

  • Villarreal DM, Do V, Haddad E, Derrick BE (2002) NMDA receptor antagonists sustain LTP and spatial memory: active processes mediate LTP decay. Nat Neurosci 5:48–52

    Article  CAS  PubMed  Google Scholar 

  • White G, Levy WB, Steward O (1990) Spatial overlap between populations of synapses determines the extent of their associative interaction during the induction of long-term potentiation and depression. J Neurophysiol 64:1186–1198

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Anwyl R, Rowan MJ (1998) Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature 394:891–894

    Article  CAS  PubMed  Google Scholar 

  • Young JZ, Nguyen PV (2005) Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity. J Neurosci 25:7221–7231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JZ, Isiegas C, Abel T, Nguyen PV (2006) Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging. Eur J Neurosci 23:1784–1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuste R (2013) Electrical compartmentalization in dendritic spines. Annu Rev Neurosci 36:429–449

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900

    Article  CAS  PubMed  Google Scholar 

  • Zucker RS (1999) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305–313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Ms. Bridget Curran, Ms. Denise Leggard, Prof. Kim Allen, and Prof. Todd Sacktor for extremely helpful comments. J.M.A. is supported by the National Institutes of Health (NIH) NS08162501A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Marcos Alarcon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alarcon, J.M. (2024). Compartmentalization of Synaptic Tagging and Capture. In: Sajikumar, S., Abel, T. (eds) Synaptic Tagging and Capture. Springer, Cham. https://doi.org/10.1007/978-3-031-54864-2_7

Download citation

Publish with us

Policies and ethics