Skip to main content

Astrocytes: The Rising Stars that Regulate Synaptic Plasticity and Long-Term Memory Formation

  • Chapter
  • First Online:
Synaptic Tagging and Capture
  • 147 Accesses

Abstract

For decades, our understanding of the mechanisms underlying long-term synaptic plasticity and memory is largely limited to the roles played by neuronal elements. Astrocytes, the most abundant glia cells in the brain, were merely assumed to play supportive roles for neurons, with little role in information computing. With the advent of newly developed tools such as mouse genetics and dynamic cellular imaging techniques that allow astrocyte-specific interrogations, emerging evidence reveals unrecognized functions of astrocytes, leading to the idea that synaptic plasticity and memory formation result from the coordinated action of neuron-glia networks. Remarkably, astrocytes could decode neural activity with elaborate Ca2+ dynamics, which in turn triggers the release of neuroactive molecules to drive synaptic plasticity and memory formation. This chapter will describe and discuss the emerging roles of astrocytes in synaptic plasticity and memory and the cellular underpinnings of their functions, focusing on their regulatory effects on long-term synaptic plasticity and memory, to match the context of this book. It is hoped that this chapter serves as a primer to probe in further role of astrocytes in regulating specific aspects of synaptic tagging and capture (STC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9:387

    Article  CAS  PubMed  Google Scholar 

  • Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N et al (2018) Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174:59–71.e14

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badia-Soteras A, Heistek TS, Kater MSJ, Mak A, Negrean A et al (2023) Retraction of astrocyte leaflets from the synapse enhances fear memory. Biol Psychiatry 94:226–238

    Article  CAS  PubMed  Google Scholar 

  • Balkowiec A, Katz DM (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 22:10399–10407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barco A, Patterson SL, Alarcon JM, Gromova P, Mata-Roig M et al (2005) Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48:123–137

    Article  CAS  PubMed  Google Scholar 

  • Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci USA 106:12524–12529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science (New York, NY) 247:470–473

    Article  CAS  Google Scholar 

  • Curreli S, Bonato J, Romanzi S (2022) Complementary encoding of spatial information in hippocampal astrocytes. PLoS Biol 20:e3001530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    Article  CAS  PubMed  Google Scholar 

  • Dong JH, Wang YJ, Cui M, Wang XJ, Zheng WS et al (2017) Adaptive activation of a stress response pathway improves learning and memory through Gs and β-Arrestin-1-regulated lactate metabolism. Biol Psychiatry 81:654–670

    Article  CAS  PubMed  Google Scholar 

  • Doron A, Rubin A, Benmelech-Chovav A, Benaim N, Carmi T et al (2022) Hippocampal astrocytes encode reward location. Nature 609:772–778

    Article  CAS  PubMed  Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    Article  CAS  PubMed  Google Scholar 

  • Gao V, Suzuki A, Magistretti PJ, Lengacher S, Pollonini G et al (2016) Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc Natl Acad Sci USA 113:8526–8531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222

    Article  PubMed  Google Scholar 

  • Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27:6473–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Chen M, Wang F, Windrem M, Wang S et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirase H, Qian L, Barthó P, Buzsáki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2:E96

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulme SR, Jones OD, Ireland DR, Abraham WC (2012) Calcium-dependent but action potential-independent BCM-like metaplasticity in the hippocampus. J Neurosci 32:6785–6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai Y, Ozawa K, Yahagi K, Mishima T, Akther S et al (2021) Transient astrocytic Gq signaling underlies remote memory enhancement. Front Neural Circuits 15:658343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones OD, Hulme SR, Abraham WC (2013) Purinergic receptor- and gap junction-mediated intercellular signalling as a mechanism of heterosynaptic metaplasticity. Neurobiol Learn Mem 105:31–39

    Article  CAS  PubMed  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M et al (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    Article  CAS  PubMed  Google Scholar 

  • Koh W, Park M, Chun YE, Lee J, Shim HS et al (2022) Astrocytes render memory flexible by releasing D-serine and regulating NMDA receptor tone in the hippocampus. Biol Psychiatry 91:740–752

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science (New York, NY) 294:1945–1948

    Article  CAS  Google Scholar 

  • Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S (2014) Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cerebral Cortex (New York, NY: 1991) 24:353–363

    Google Scholar 

  • Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603–614

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Ji Y, Ganesan S, Schloesser R, Martinowich K et al (2011) TrkB as a potential synaptic and behavioral tag. J Neurosci 31:11762–11771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Si T, Wang Z, Wen P, Zhu Z et al (2023) Astrocytic α4-containing nAChR signaling in the hippocampus governs the formation of temporal association memory. Cell Rep 42:112674

    Article  CAS  PubMed  Google Scholar 

  • Mariotti L, Losi G, Lia A, Melone M, Chiavegato A et al (2018) Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nat Commun 9:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Mederos S, Hernández-Vivanco A, Ramírez-Franco J, Martín-Fernández M, Navarrete M et al (2019) Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 67:915–934

    Article  PubMed  Google Scholar 

  • Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ et al (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 276:12660–12666

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Bennett DV, Rubinov M, Narayan S, Yang CT et al (2019) Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 178:27–43.e19

    Article  CAS  PubMed  Google Scholar 

  • Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6:153–160

    Article  CAS  PubMed  Google Scholar 

  • Nam MH, Han KS, Lee J, Won W, Koh W et al (2019) Activation of astrocytic μ-opioid receptor causes conditioned place preference. Cell Rep 28:1154–1166.e5

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68:113–126

    Article  CAS  PubMed  Google Scholar 

  • Navarrete M, Cuartero MI (2019) Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory. Nat Commun 10:2968

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarrete M, Perea G, Fernandez de Sevilla D, Gómez-Gonzalo M, Núñez A et al (2012) Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol 10:e1001259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science (New York, NY) 275:844–847

    Article  CAS  Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One 6:e28427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oe Y, Wang X, Patriarchi T, Konno A (2020) Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nat Commun 11:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panatier A, Vallée J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Dunphy JM, Tolman M, Dineley KT, Haydon PG (2017) Septal cholinergic Neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron 94:840–854.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perea G, Araque A (2007) Astrocytes potentiate transmitter release at single hippocampal synapses. Science (New York, NY) 317:1083–1086

    Article  CAS  Google Scholar 

  • Perea G, Gómez R, Mederos S, Covelo A, Ballesteros JJ et al (2016) Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks. Elife 5:e20362

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Alvarez A, Navarrete M (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34:12738–12744

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455

    Article  CAS  PubMed  Google Scholar 

  • Robin LM, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent M et al (2018) Astroglial CB(1) receptors determine synaptic D-serine availability to enable recognition memory. Neuron 98:935–944.e5

    Article  CAS  PubMed  Google Scholar 

  • Rusakov DA, Kullmann DM (1998) Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci 18:3158–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Korte M (2011) Metaplasticity governs compartmentalization of synaptic tagging and capture through brain-derived neurotrophic factor (BDNF) and protein kinase Mzeta (PKMzeta). Proc Natl Acad Sci USA 108:2551–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22:154–166

    Article  CAS  PubMed  Google Scholar 

  • Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science (New York, NY) 320:1638–1643

    Article  CAS  Google Scholar 

  • Semyanov A, Henneberger C (2020) Making sense of astrocytic calcium signals - from acquisition to interpretation. Nat Rev Neurosci 21:551–564

    Article  CAS  PubMed  Google Scholar 

  • Serrano A, Haddjeri N, Lacaille JC, Robitaille R (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman MQ, Gao V, Alberini CM (2016) The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Front Integr Neurosci 10:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH et al (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadi M, Allaman I, Lengacher S, Grenningloh G, Magistretti PJ (2015) Learning-induced gene expression in the hippocampus reveals a role of neuron -astrocyte metabolic coupling in long term memory. PLoS One 10:e0141568

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd KJ, Darabid H, Robitaille R (2010) Perisynaptic glia discriminate patterns of motor nerve activity and influence plasticity at the neuromuscular junction. J Neurosci 30:11870–11882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezzoli E, Calì C, De Roo M, Ponzoni L, Sogne E et al (2020) Ultrastructural evidence for a role of astrocytes and glycogen-derived lactate in learning-dependent synaptic stabilization. Cerebral cortex (New York, NY: 1991) 30:2114–2127

    CAS  Google Scholar 

  • Vignoli B, Battistini G, Melani R, Blum R, Santi S et al (2016) Peri-synaptic glia recycles brain-derived neurotrophic factor for LTP stabilization and memory retention. Neuron 92:873–887

    Article  CAS  PubMed  Google Scholar 

  • Vignoli B, Sansevero G, Sasi M, Rimondini R (2021) Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention. Commun Biol 4:1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lou N, Xu Q, Tian GF, Peng WG et al (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Förster R, He W, Liao X (2021) Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat Neurosci 24:1686–1698

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Okamoto K (2021) Astrocytic cAMP modulates memory via synaptic plasticity. Proc Nat Acad Sci USA 118:e2016584118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Q.L. is supported by the National Natural Science Foundation of China (31900708) and the Natural Science Foundation of Hubei Province of China (2021CFB546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Q. (2024). Astrocytes: The Rising Stars that Regulate Synaptic Plasticity and Long-Term Memory Formation. In: Sajikumar, S., Abel, T. (eds) Synaptic Tagging and Capture. Springer, Cham. https://doi.org/10.1007/978-3-031-54864-2_16

Download citation

Publish with us

Policies and ethics