Skip to main content

Dopamine and Synaptic Tagging and Capture: A Neuromodulatory Interplay That Shapes Associative Plasticity

  • Chapter
  • First Online:
Synaptic Tagging and Capture
  • 127 Accesses

Abstract

Dopamine is a neurotransmitter that plays a crucial role in regulating diverse functions, such as motor control, mood, sleep, attention, reward systems, reinforcing behavior, and certain higher cognitive functions. Physiological and behavioral evidence indicates that dopamine receptor signaling has been shown to modulate hippocampus-dependent synaptic plasticity and learning and memory. Although the role of dopamine in regulating the hippocampus is well-established, the precise molecular and cellular mechanisms by which dopamine coordinates these processes in the hippocampus are not yet fully understood. This chapter presents a concise overview of dopaminergic neuromodulation required for the establishment of hippocampal late LTP (L-LTP) and its late-associative processes such as synaptic tagging and capture (STC) in CA1 pyramidal neurons. Additionally, the source of dopaminergic signals in the hippocampus and the mechanism by which dopamine neuromodulation induces the synthesis of plasticity-related proteins (PRPs) is detailed, along with its involvement in establishing STC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R (1997) Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88(5):615–626

    Article  CAS  PubMed  Google Scholar 

  • Angela JY, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron 46(4):681–692

    Article  Google Scholar 

  • Babushkina N, Manahan-Vaughan D (2022) Frequency–dependency of the involvement of dopamine D1/D5 and beta-adrenergic receptors in hippocampal LTD triggered by locus coeruleus stimulation. Hippocampus 32(6):449–465

    Article  CAS  PubMed  Google Scholar 

  • Bach ME, Barad M, Son H, Zhuo M, Lu Y-F, Shih R, Mansuy I, Hawkins RD, Kandel ER (1999) Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci 96(9):5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry AS, Shah VD, Baker SL, Vogel JW, O’Neil JP, Janabi M, Schwimmer HD, Marks SM, Jagust WJ (2016) Aging affects dopaminergic neural mechanisms of cognitive flexibility. J Neurosci 36(50):12559–12569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethus I, Tse D, Morris RG (2010) Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 30(5):1610–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bin Ibrahim MZ, Benoy A, Sajikumar S (2022) Long-term plasticity in the hippocampus: maintaining within and ‘tagging’ between synapses. FEBS J 289(8):2176–2201

    Article  CAS  PubMed  Google Scholar 

  • Birtwistle J, Baldwin D (1998) Role of dopamine in schizophrenia and Parkinson’s disease. Br J Nurs 7(14):832–841

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury R, Guitart-Masip M, Bunzeck N, Dolan RJ, Duzel E (2012) Dopamine modulates episodic memory persistence in old age. J Neurosci 32(41):14193–14204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciliax BJ, Nash N, Heilman C, Sunahara R, Hartney A, Tiberi M, Rye DB, Caron MG, Niznik HB, Levey AI (2000) Dopamine D(5) receptor immunolocalization in rat and monkey brain. Synapse 37(2):125–145

    Article  CAS  PubMed  Google Scholar 

  • da Silva WC, Köhler CC, Radiske A, Cammarota M (2012) D1/D5 dopamine receptors modulate spatial memory formation. Neurobiol Learn Mem 97(2):271–275

    Article  PubMed  Google Scholar 

  • Defagot MC, Malchiodi EL, Villar MJ, Antonelli MC (1997) Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies. Brain Res Mol Brain Res 45(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci 89(10):4363–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duszkiewicz AJ, McNamara CG, Takeuchi T, Genzel L (2019) Novelty and dopaminergic modulation of memory persistence: a tale of two systems. Trends Neurosci 42(2):102–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17(1):51–72

    Article  PubMed  Google Scholar 

  • Frank MJ, Santamaria A, O’Reilly RC, Willcutt E (2007) Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology 32(7):1583–1599

    Article  CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Duncan GE, Fornaretto MG, Dearry A, Gingrich JA, Breese GR, Caron MG (1991) Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc Natl Acad Sci USA 88(9):3772–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385(6616):533–536

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Morris RG (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21(5):181–188

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Schroeder H, Matthies H (1990) Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Res 522(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Matthies H, Reymann KG (1991) The effect of dopaminergic D1 receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro. Neurosci Lett 129(1):111–114

    Article  CAS  PubMed  Google Scholar 

  • Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260(5114):1661–1664

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev 26(2–3):148–153

    Article  CAS  PubMed  Google Scholar 

  • Gálvez-Márquez DK, Salgado-Ménez M, Moreno-Castilla P, Rodríguez-Durán L, Escobar ML, Tecuapetla F, Bermudez-Rattoni F (2022) Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus. Proc Natl Acad Sci 119(49):e2208254119

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 21(1):1–22

    Article  CAS  Google Scholar 

  • Goldsmith SK, Joyce JN (1994) Dopamine D2 receptor expression in hippocampus and parahippocampal cortex of rat, cat, and human in relation to tyrosine hydroxylase-immunoreactive fibers. Hippocampus 4(3):354–373

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan A, Kelleher RJ, Tonegawa S (2006) A clustered plasticity model of long-term memory engrams. Nat Rev Neurosci 7(7):575–583

    Article  CAS  PubMed  Google Scholar 

  • Grogan J, Bogacz R, Tsivos D, Whone A, Coulthard E (2015) Dopamine and consolidation of episodic memory: timing is everything. J Cogn Neurosci 27(10):2035–2050

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39

    Article  CAS  PubMed  Google Scholar 

  • Hansen N, Manahan-Vaughan D (2015) Hippocampal long-term potentiation that is elicited by perforant path stimulation or that occurs in conjunction with spatial learning is tightly controlled by beta-adrenoreceptors and the locus coeruleus. Hippocampus 25(11):1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y-Y, Kandel ER (1995) D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci 92(7):2446–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y-Y, Kandel ER (2006) Age-related enhancement of a protein synthesis-dependent late phase of LTP induced by low frequency paired-pulse stimulation in hippocampus. Learn Mem 13(3):298–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y-Y, Kandel ER, Varshavsky L, Brandont EP, Qi M, Idzerda RL, McKnight GS, Bourtchouladz R (1995) A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell 83(7):1211–1222

    Article  CAS  PubMed  Google Scholar 

  • Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69(6):375–390

    Article  CAS  PubMed  Google Scholar 

  • Kano M, Hashimoto K (2009) Synapse elimination in the central nervous system. Curr Opin Neurobiol 19(2):154–161

    Article  CAS  PubMed  Google Scholar 

  • Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR (2017) Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging 57:36–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MT, Crary JF, Sacktor TC (2007) Regulation of protein kinase Mzeta synthesis by multiple kinases in long-term potentiation. J Neurosci 27(13):3439–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER (2016) Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci 113(51):14835–14840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42(2):283–295

    Article  CAS  PubMed  Google Scholar 

  • Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, de la Calle A (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100(4):689–699

    Article  CAS  PubMed  Google Scholar 

  • Kienast T, Heinz A (2006) Dopamine and the diseased brain. CNS Neurol Disord Drug Targets 5(1):109–131

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Malik AN, Mikhael JG, Bech P, Tsutsui-Kimura I, Sun F, Zhang Y, Li Y, Watabe-Uchida M, Gershman SJ (2020) A unified framework for dopamine signals across timescales. Cell 183(6):1600–1616. e1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarov NE, Schmidt U, Wanner I, Pilgrim C (1998) Mapping of D 1 dopamine receptor mRNA by non-radioactive in situ hybridization. Histochem Cell Biol 109:271–279

    Article  CAS  PubMed  Google Scholar 

  • Lee AM, Kanter BR, Wang D, Lim JP, Zou ME, Qiu C, McMahon T, Dadgar J, Fischbach-Weiss SC, Messing RO (2013) Prkcz null mice show normal learning and memory. Nature 493(7432):416–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehr AB, Luboeinski J, Tetzlaff C (2022) Neuromodulator-dependent synaptic tagging and capture retroactively controls neural coding in spiking neural networks. Sci Rep 12(1):17772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemon N, Manahan-Vaughan D (2012) Dopamine D1/D5 receptors contribute to de novo hippocampal LTD mediated by novel spatial exploration or locus coeruleus activity. Cereb Cortex 22(9):2131–2138

    Article  PubMed  Google Scholar 

  • Lemon N, Aydin-Abidin S, Funke K, Manahan-Vaughan D (2009) Locus coeruleus activation facilitates memory encoding and induces hippocampal LTD that depends on β-adrenergic receptor activation. Cereb Cortex 19(12):2827–2837

    Article  PubMed  PubMed Central  Google Scholar 

  • Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci USA 90(19):8861–8865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6(5):526–531

    Article  CAS  PubMed  Google Scholar 

  • Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002) Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat Neurosci 5(4):295–296

    Article  CAS  PubMed  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713

    Article  CAS  PubMed  Google Scholar 

  • Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14(2):154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  • Martin KC, Kosik KS (2002) Synaptic tagging—who’s it? Nat Rev Neurosci 3(10):813–820

    Article  CAS  PubMed  Google Scholar 

  • Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, Bailey CH, Kandel ER (1997) Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91(7):927–938

    Article  CAS  PubMed  Google Scholar 

  • Matthies H, Becker A, Schröeder H, Kraus J, Höllt V, Krug M (1997) Dopamine D1-deficient mutant mice do not express the late phase of hippocampal long-term potentiation. Neuroreport 8(16):3533–3535

    Article  CAS  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    Article  CAS  PubMed  Google Scholar 

  • Moncada D, Viola H (2007) Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J Neurosci 27(28):7476–7481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncada D, Ballarini F, Viola H (2015) Behavioral tagging: a translation of the synaptic tagging and capture hypothesis. Neural Plast 2015:650780

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris R (2006) Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur J Neurosci 23(11):2829–2846

    Article  CAS  PubMed  Google Scholar 

  • Navakkode S, Sajikumar S, Frey JU (2007) Synergistic requirements for the induction of dopaminergic D1/D5-receptor-mediated LTP in hippocampal slices of rat CA1 in vitro. Neuropharmacology 52(7):1547–1554

    Article  CAS  PubMed  Google Scholar 

  • Navakkode S, Sajikumar S, Sacktor TC, Frey JU (2010) Protein kinase Mzeta is essential for the induction and maintenance of dopamine-induced long-term potentiation in apical CA1 dendrites. Learn Mem 17(12):605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navakkode S, Sajikumar S, Korte M, Soong TW (2012) Dopamine induces LTP differentially in apical and basal dendrites through BDNF and voltage-dependent calcium channels. Learn Mem 19(7):294–299

    Article  CAS  PubMed  Google Scholar 

  • Navakkode S, Chew KC, Tay SJN, Lin Q, Behnisch T, Soong TW (2017) Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus. Sci Rep 7(1):15571

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Carroll CM, Morris RG (2004) Heterosynaptic co-activation of glutamatergic and dopaminergic afferents is required to induce persistent long-term potentiation. Neuropharmacology 47(3):324–332

    Article  PubMed  Google Scholar 

  • O’Carroll CM, Martin SJ, Sandin J, Frenguelli B, Morris RG (2006) Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learn Mem 13(6):760–769

    Article  PubMed  PubMed Central  Google Scholar 

  • Redondo RL, Morris RG (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12(1):17–30

    Article  CAS  PubMed  Google Scholar 

  • Sacktor TC (2011) How does PKMzeta maintain long-term memory? Nat Rev Neurosci 12(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Frey JU (2004) Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol Learn Mem 82(1):12–25

    Article  CAS  PubMed  Google Scholar 

  • Sajikumar S, Navakkode S, Sacktor TC, Frey JU (2005) Synaptic tagging and cross-tagging: the role of protein kinase Mzeta in maintaining long-term potentiation but not long-term depression. J Neurosci 25(24):5750–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Navakkode S, Frey JU (2007) Identification of compartment- and process-specific molecules required for "synaptic tagging" during long-term potentiation and long-term depression in hippocampal CA1. J Neurosci 27(19):5068–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajikumar S, Morris RG, Korte M (2014) Competition between recently potentiated synaptic inputs reveals a winner-take-all phase of synaptic tagging and capture. Proc Natl Acad Sci 111(33):12217–12221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samanez-Larkin GR, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, Arrington CM, Baldwin RM, Smith CE, Treadway MT (2013) A thalamocorticostriatal dopamine network for psychostimulant-enhanced human cognitive flexibility. Biol Psychiatry 74(2):99–105

    Article  CAS  PubMed  Google Scholar 

  • Scatton B, Simon H, Le Moal M, Bischoff S (1980) Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci Lett 18(2):125–131

    Article  CAS  PubMed  Google Scholar 

  • Serrano P, Yao Y, Sacktor TC (2005) Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation. J Neurosci 25(8):1979–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty MS, Sajikumar S (2017a) Differential involvement of Ca2+/calmodulin-dependent protein kinases and mitogen-activated protein kinases in the dopamine D1/D5 receptor-mediated potentiation in hippocampal CA1 pyramidal neurons. Neurobiol Learn Mem 138:111–120

    Article  CAS  PubMed  Google Scholar 

  • Shetty MS, Sajikumar S (2017b) ‘Tagging’ along memories in aging: synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 35:22–35

    Article  Google Scholar 

  • Shetty MS, Sharma M, Sajikumar S (2017) Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA 1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell 16(1):136–148

    Article  CAS  PubMed  Google Scholar 

  • Shires KL, Da Silva BM, Hawthorne JP, Morris RG, Martin SJ (2012) Synaptic tagging and capture in the living rat. Nat Commun 3:1246

    Article  CAS  PubMed  Google Scholar 

  • Shivarama Shetty M, Gopinadhan S, Sajikumar S (2016) Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA 1 pyramidal neurons via sustained ERK 1/2 activation. Hippocampus 26(2):137–150

    Article  CAS  PubMed  Google Scholar 

  • Smith CC, Greene RW (2012) CNS dopamine transmission mediated by noradrenergic innervation. J Neurosci 32(18):6072–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith WB, Starck SR, Roberts RW, Schuman EM (2005) Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 45(5):765–779

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, Smith CC, Fernández G, Deisseroth K, Greene RW (2016) Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537(7620):357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaiuolo M, Katche C, Viola H, Medina JH (2015) Evidence of maintenance tagging in the hippocampus for the persistence of long-lasting memory storage. Neural Plast 2015:1

    Article  Google Scholar 

  • Vishnoi S, Raisuddin S, Parvez S (2022) Behavioral tagging: role of neurotransmitter receptor systems in novel object recognition long-term memory. ACS Omega 7(14):11587–11595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL (2013) PKM-zeta is not required for hippocampal synaptic plasticity, learning and memory. Nature 493(7432):420–423

    Article  CAS  PubMed  Google Scholar 

  • von Cederwald BF, Johansson J, Riklund K, Karalija N, Boraxbekk C-J (2023) White matter lesion load determines exercise-induced dopaminergic plasticity and working memory gains in aging. Transl Psychiatry 13(1):28

    Article  Google Scholar 

  • Wang SH, Redondo RL, Morris RG (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci USA 107(45):19537–19542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing B, Kong H, Meng X, Wei S, Xu M, Li S (2010) Dopamine D1 but not D3 receptor is critical for spatial learning and related signaling in the hippocampus. Neuroscience 169(4):1511–1519

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeja Navakkode PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navakkode, S. (2024). Dopamine and Synaptic Tagging and Capture: A Neuromodulatory Interplay That Shapes Associative Plasticity. In: Sajikumar, S., Abel, T. (eds) Synaptic Tagging and Capture. Springer, Cham. https://doi.org/10.1007/978-3-031-54864-2_15

Download citation

Publish with us

Policies and ethics