Skip to main content

Lactation and the Control of the Prolactin Secretion

  • Chapter
  • First Online:
Neuroendocrine Regulation of Mammalian Pregnancy and Lactation

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 15))

Abstract

Prolactin is a polypeptide hormone secreted from the lactotrophs in the anterior pituitary gland. It is recognized as a pleiotropic hormone with multiple biological actions, which seem to have evolved to provide physiological adaptations required for the success of reproduction. Among its numerous roles, lactation is one to which prolactin is essential, being the primary hormone responsible for the synthesis of milk. The neuroendocrine control of prolactin secretion is unique among the anterior pituitary hormones. The lactotrophs have a high spontaneous capacity for proliferation and secretion of prolactin that is suppressed by dopamine. Neuroendocrine dopaminergic (NEDA) neurons release dopamine into the hypothalamic-pituitary portal blood system to inhibit prolactin secretion. Prolactin exerts a short-loop negative feedback effect stimulating several aspects of NEDA neuronal activity, resulting in inhibition of its own secretion. The nipple suckling by the offspring during lactation is the most powerful stimulus to increase prolactin secretion. Thus, lactation is a hyperprolactinemic state, characterized by suckling-induced prolactin surges and chronically elevated basal levels of prolactin. Phenotypic and functional modifications in the NEDA neurons associated with changes in the number and organization of lactotrophs are responsible for the remarkable increase in prolactin secretion during lactation. Hypothalamic prolactin-releasing factors seem to also stimulate the rise in prolactin secretion, but their identity remains to be determined. In this chapter, we review the classical concepts and recent advances in our understanding of the neuroendocrine control of prolactin secretion and how it changes to promote the physiological state of hyperprolactinemia during lactation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeledo-Machado A, Perez PA, Camilletti MA, Faraoni EY, Picech F, Petiti JP, Gutierrez S, Diaz-Torga G (2020) TGFbeta1 regulates prolactin secretion during postnatal development: gender differences. J Endocrinol 246:29–39

    Article  CAS  PubMed  Google Scholar 

  • Ammari R, Broberger C (2020) Pre- and post-synaptic modulation by GABAB receptors of rat neuroendocrine dopamine neurones. J Neuroendocrinol 32:e12881

    Article  CAS  PubMed  Google Scholar 

  • Anderson GM, Beijer P, Bang AS, Fenwick MA, Bunn SJ, Grattan DR (2006a) Suppression of prolactin-induced signal transducer and activator of transcription 5b signaling and induction of suppressors of cytokine signaling messenger ribonucleic acid in the hypothalamic arcuate nucleus of the rat during late pregnancy and lactation. Endocrinology 147:4996–5005

    Article  CAS  PubMed  Google Scholar 

  • Anderson ST, Barclay JL, Fanning KJ, Kusters DH, Waters MJ, Curlewis JD (2006b) Mechanisms underlying the diminished sensitivity to prolactin negative feedback during lactation: reduced STAT5 signaling and up-regulation of cytokine-inducible SH2 domain-containing protein (CIS) expression in tuberoinfundibular dopaminergic neurons. Endocrinology 147:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Andrews ZB, Grattan DR (2003) Opioid receptor subtypes involved in the regulation of prolactin secretion during pregnancy and lactation. J Neuroendocrinol 15:227–236

    Article  CAS  PubMed  Google Scholar 

  • Aoki M, Wartenberg P, Grunewald R, Phillipps HR, Wyatt A, Grattan DR, Boehm U (2019) Widespread cell-specific prolactin receptor expression in multiple murine organs. Endocrinology 160:2587–2599

    Article  CAS  PubMed  Google Scholar 

  • Aquino NSS, Araujo-Lopes R, Henriques PC, Lopes FEF, Gusmao DO, Coimbra CC, Franci CR, Reis AM, Szawka RE (2017) alpha-Estrogen and progesterone receptors modulate kisspeptin effects on prolactin: role in estradiol-induced prolactin surge in female rats. Endocrinology 158:1812–1826

    Article  CAS  PubMed  Google Scholar 

  • Aquino NSS, Kokay IC, Perez CT, Ladyman SR, Henriques PC, Silva JF, Broberger C, Grattan DR, Szawka RE (2019) Kisspeptin stimulation of prolactin secretion requires kiss1 receptor but not in tuberoinfundibular dopaminergic neurons. Endocrinology 160:522–533

    Article  PubMed  Google Scholar 

  • Araujo-Lopes R, Crampton JR, Aquino NS, Miranda RM, Kokay IC, Reis AM, Franci CR, Grattan DR, Szawka RE (2014) Prolactin regulates kisspeptin neurons in the arcuate nucleus to suppress LH secretion in female rats. Endocrinology 155:1010–1020

    Article  PubMed  Google Scholar 

  • Arbogast LA, Hyde JF (2000) Estradiol attenuates the forskolin-induced increase in hypothalamic tyrosine hydroxylase activity. Neuroendocrinology 71:219–227

    Article  CAS  PubMed  Google Scholar 

  • Arbogast LA, Voogt JL (1996) The responsiveness of tuberoinfundibular dopaminergic neurons to prolactin feedback is diminished between early lactation and midlactation in the rat. Endocrinology 137:47–54

    Article  CAS  PubMed  Google Scholar 

  • Arbogast LA, Voogt JL (1998) Endogenous opioid peptides contribute to suckling-induced prolactin release by suppressing tyrosine hydroxylase activity and messenger ribonucleic acid levels in tuberoinfundibular dopaminergic neurons. Endocrinology 139:2857–2862

    Article  CAS  PubMed  Google Scholar 

  • Arey BJ, Kanyicska B, Freeman ME (1991) The endogenous stimulatory rhythm regulating prolactin secretion is present in the lactating rat. Neuroendocrinology 53:35–40

    Article  CAS  PubMed  Google Scholar 

  • Arita JA, Kimura K (1988) Enkephalin inhibits dopamine synthesis in vitro in the median eminence portion of rat hypothalamic slices. Endocrinology 123:694–699

    Article  CAS  PubMed  Google Scholar 

  • Ben-Jonathan N, Hnasko R (2001) Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 22:724–763

    Article  CAS  PubMed  Google Scholar 

  • Ben-Jonathan N, Neill MA, Arbogast LA, Peters LL, Hoefer MT (1980) Dopamine in hypophysial portal blood: relationship to circulating prolactin in pregnant and lactating rats. Endocrinology 106:690–696

    Article  CAS  PubMed  Google Scholar 

  • Ben-Jonathan N, Lapensee CR, Lapensee EW (2008) What can we learn from rodents about prolactin in humans? Endocr Rev 29:1–41

    Article  CAS  PubMed  Google Scholar 

  • Berghorn KA, Le WW, Sherman TG, Hoffman GE (2001) Suckling stimulus suppresses messenger RNA for tyrosine hydroxylase in arcuate neurons during lactation. J Comp Neurol 438:423–432

    Article  CAS  PubMed  Google Scholar 

  • Bjelobaba I, Janjic MM, Kucka M, Stojilkovic SS (2015) Cell type-specific sexual dimorphism in rat pituitary gene expression during maturation. Biol Reprod 93:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum T, Moreno-Perez A, Pyrski M, Bufe B, Arifovic A, Weissgerber P, Freichel M, Zufall F, Leinders-Zufall T (2019) Trpc5 deficiency causes hypoprolactinemia and altered function of oscillatory dopamine neurons in the arcuate nucleus. Proc Natl Acad Sci U S A 116:15236–15243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodnar I, Banky ZS, Toth BE, Nagy GM, Halasz B (2002) Brain structures mediating the suckling stimulus-induced release of prolactin. J Neuroendocrinol 14:384–396

    Article  CAS  PubMed  Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268

    Article  CAS  PubMed  Google Scholar 

  • Boyd AE, Spencer E, Jackson IM, Reichlin S (1976) Prolactin-releasing factor (PRF) in porcine hypothalamic extract distinct from TRH. Endocrinology 99:861–871

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2011) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84:826–836

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Piet R, Herbison AE, Grattan DR (2012) Differential actions of prolactin on electrical activity and intracellular signal transduction in hypothalamic neurons. Endocrinology 153:2375–2384

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Wyatt AK, Herbison RE, Knowles PJ, Ladyman SR, Binart N, Banks WA, Grattan DR (2016a) Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J 30:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Kokay IC, Phillipps HR, Yip SH, Gustafson P, Wyatt A, Larsen CM, Knowles P, Ladyman SR, LeTissier P et al (2016b) Conditional deletion of the prolactin receptor reveals functional subpopulations of dopamine neurons in the arcuate nucleus of the hypothalamus. J Neurosci 36:9173–9185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butcher RL, Fugo NW, Collins WE (1972) Semicircadian rhythm in plasma levels of prolactin during early gestation in the rat. Endocrinology 90:1125–1127

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Cohen KB, Luo T, Lichtman JW, Sanes JR (2013) Improved tools for the Brainbow toolbox. Nat Methods 10:540–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan P, Klosterman S, Prunty D, Tompkins J, Janik J (2000) Immunoneutralization of endogenous opioid peptides prevents the suckling-induced prolactin increase and the inhibition of tuberoinfundibular dopaminergic neurons. Neuroendocrinology 71:268–276

    Article  CAS  PubMed  Google Scholar 

  • Camilletti MA, Abeledo-Machado A, Faraoni EY, Thomas P, Diaz-Torga G (2019a) New insights into progesterone actions on prolactin secretion and prolactinoma development. Steroids 152:108496

    Article  CAS  PubMed  Google Scholar 

  • Camilletti MA, Abeledo-Machado A, Ferraris J, Perez PA, Faraoni EY, Pisera D, Gutierrez S, Diaz-Torga G (2019b) Role of GPER in the anterior pituitary gland focusing on lactotroph function. J Endocrinol 240:99–110

    Article  CAS  PubMed  Google Scholar 

  • Campbell RE, Grove KL, Smith MS (2003) Distribution of corticotropin releasing hormone receptor immunoreactivity in the rat hypothalamus: coexpression in neuropeptide Y and dopamine neurons in the arcuate nucleus. Brain Res 973:223–232

    Article  CAS  PubMed  Google Scholar 

  • Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, Goldman M, Verstegen AM, Resch JM, McCarroll SA et al (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao D, Ma X, Cai J, Luan J, Liu AJ, Yang R, Cao Y, Zhu X, Zhang H, Chen YX et al (2016) ZBTB20 is required for anterior pituitary development and lactotrope specification. Nat Commun 7:11121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan-Palay V, Zaborszky L, Kohler C, Goldstein M, Palay SL (1984) Distribution of tyrosine-hydroxylase-immunoreactive neurons in the hypothalamus of rats. J Comp Neurol 227:467–496

    Article  CAS  PubMed  Google Scholar 

  • Cheung LYM, George AS, McGee SR, Daly AZ, Brinkmeier ML, Ellsworth BS, Camper SA (2018) Single-cell RNA sequencing reveals novel markers of male pituitary stem cells and hormone-producing cell types. Endocrinology 159:3910–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM, Niznik HB, Levey AI (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15:1714–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke NE, Coit D, Shine J, Baxter JD, Martial JA (1981) Human prolactin. cDNA structural analysis and evolutionary comparisons. J Biol Chem 256:4007–4016

    Article  CAS  PubMed  Google Scholar 

  • Cowie AT, Tindal JS, Benson GK (1960) Pituitary grafts and milk secretion in hypophysectomized rats. J Endocrinol 21:115–123

    Article  CAS  PubMed  Google Scholar 

  • Cservenak M, Szabo ER, Bodnar I, Leko A, Palkovits M, Nagy GM, Usdin TB, Dobolyi A (2013) Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 38:3070–3084

    Article  CAS  PubMed  Google Scholar 

  • de Greef WJ, Plotsky PM, Neill JD (1981) Dopamine levels in hypophysial stalk plasma and prolactin levels in peripheral plasma of the lactating rat: effects of a simulated suckling stimulus. Neuroendocrinology 32:229–233

    Article  PubMed  Google Scholar 

  • Demarest KT, Johnston CA, Moore KE (1981) Biochemical indices of catecholaminergic neuronal activity in the median eminence during the estrous cycle of the rat. Neuroendocrinology 32:24–27

    Article  CAS  PubMed  Google Scholar 

  • Demarest KT, McKay DW, Riegle GD, Moore KE (1983) Biochemical indices of tuberoinfundibular dopaminergic neuronal activity during lactation: a lack of response to prolactin. Neuroendocrinology 36:130–137

    Article  CAS  PubMed  Google Scholar 

  • Demarest KT, Riegle GD, Moore KE (1986) The rapid ‘tonic’ and the delayed ‘induction’ components of the prolactin-induced activation of tuberoinfundibular dopaminergic neurons following the systemic administration of prolactin. Neuroendocrinology 43:291–299

    Article  CAS  PubMed  Google Scholar 

  • Denef C (2008) Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 20:1–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denef C, Baes M, Schramme C (1984) Stimulation of prolactin secretion after short term or pulsatile exposure to dopamine in superfused anterior pituitary cell aggregates. Endocrinology 114:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Diaz S, Seron-Ferre M, Cardenas H, Schiappacasse V, Brandeis A, Croxatto HB (1989) Circadian variation of basal plasma prolactin, prolactin response to suckling, and length of amenorrhea in nursing women. J Clin Endocrinol Metab 68:946–955

    Article  CAS  PubMed  Google Scholar 

  • Djahanbakhch O, McNeilly AS, Warner PM, Swanston IA, Baird DT (1984) Changes in plasma levels of prolactin, in relation to those of FSH, oestradiol, androstenedione and progesterone around the preovulatory surge of LH in women. Clin Endocrinol 20:463–472

    Article  CAS  Google Scholar 

  • Dobolyi A, Irwin S, Wang J, Usdin TB (2006) The distribution and neurochemistry of the parathyroid hormone 2 receptor in the rat hypothalamus. Neurochem Res 31:227–236

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Olah S, Keller D, Kumari R, Fazekas EA, Csikos V, Renner E, Cservenak M (2020) Secretion and function of pituitary prolactin in evolutionary perspective. Front Neurosci 14:621

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunkley PR, Dickson PW (2019) Tyrosine hydroxylase phosphorylation in vivo. J Neurochem 149:706–728

    Article  CAS  PubMed  Google Scholar 

  • Everett JW (1956) Functional corpora lutea maintained for months by autografts of rat hypophyses. Endocrinology 58:786–796

    Article  CAS  PubMed  Google Scholar 

  • Featherstone K, White MR, Davis JR (2012) The prolactin gene: a paradigm of tissue-specific gene regulation with complex temporal transcription dynamics. J Neuroendocrinol 24:977–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Featherstone K, Hey K, Momiji H, McNamara AV, Patist AL, Woodburn J, Spiller DG, Christian HC, McNeilly AS, Mullins JJ et al (2016) Spatially coordinated dynamic gene transcription in living pituitary tissue. elife 5:e08494

    Article  PubMed  PubMed Central  Google Scholar 

  • Feher P, Olah M, Bodnar I, Hechtl D, Bacskay I, Juhasz B, Nagy GM, Vecsernyes M (2010) Dephosphorylation/inactivation of tyrosine hydroxylase at the median eminence of the hypothalamus is required for suckling-induced prolactin and adrenocorticotrop hormone responses. Brain Res Bull 82:141–145

    Article  CAS  PubMed  Google Scholar 

  • Fitzsimmons MD, Olschowka JA, Wiegand SJ, Hoffman GE (1992) Interaction of opioid peptide-containing terminals with dopaminergic perikarya in the rat hypothalamus. Brain Res 581:10–18

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PA, Smiljanic K, Maso Previde R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS (2019) Cell type- and sex-dependent transcriptome profiles of rat anterior pituitary cells. Front Endocrinol (Lausanne) 10:623

    Article  PubMed  Google Scholar 

  • Fliestra RJ, Voogt JL (1997) Lactogenic hormones of the placenta and pituitary inhibit suckling-induced prolactin (PRL) release but not the ante-partum PRL surge. Proc Soc Exp Biol Med 214:258–264

    Article  CAS  PubMed  Google Scholar 

  • Frawley LS, Boockfor FR (1991) Mammosomatotropes: presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 12:337–355

    Article  CAS  PubMed  Google Scholar 

  • Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    Article  CAS  PubMed  Google Scholar 

  • Gellersen B, Kempf R, Telgmann R, DiMattia GE (1994) Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol Endocrinol 8:356–373

    CAS  PubMed  Google Scholar 

  • Grattan DR (2015) 60 years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 226:T101–T122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grattan DR, Averill RL (1995) Absence of short-loop autoregulation of prolactin during late pregnancy in the rat. Brain Res Bull 36:413–416

    Article  CAS  PubMed  Google Scholar 

  • Grattan DR, Le Tissier P (2015) Hypothalamic control of prolactin secretion, and the multiple reproductive functions of prolactin. In: Plant TM, Zelezni AJ (eds) Knobil and Neil’s physiology of reproduction, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Grattan DR, Xu J, McLachlan MJ, Kokay IC, Bunn SJ, Hovey RC, Davey HW (2001) Feedback regulation of PRL secretion is mediated by the transcription factor, signal transducer, and activator of transcription 5b. Endocrinology 142:3935–3940

    Article  CAS  PubMed  Google Scholar 

  • Grosvenor CE, Mena F (1980) Evidence that thyrotropin-releasing hormone and a hypothalamic prolactin-releasing factor may function in the release of prolactin in the lactating rat. Endocrinology 107:863–868

    Article  CAS  PubMed  Google Scholar 

  • Grosvenor CE, Whitworth N (1974) Evidence for a steady rate of secretion of prolactin following suckling in the rat. J Dairy Sci 57:900–904

    Article  CAS  PubMed  Google Scholar 

  • Grosvenor CE, Whitworth NS, Mena F (1981) Evidence that the depletion and release phases of prolactin secretion in the lactating rat have different activation thresholds in response to exteroceptive stimulation from rat pups. Endocrinology 108:820–824

    Article  CAS  PubMed  Google Scholar 

  • Guillou A, Romano N, Steyn F, Abitbol K, Le Tissier P, Bonnefont X, Chen C, Mollard P, Martin AO (2015) Assessment of lactotroph axis functionality in mice: longitudinal monitoring of PRL secretion by ultrasensitive-ELISA. Endocrinology 156:1924–1930

    Article  CAS  PubMed  Google Scholar 

  • Gunnet JW, Freeman ME (1983) The mating-induced release of prolactin: a unique neuroendocrine response. Endocr Rev 4:44–61

    Article  CAS  PubMed  Google Scholar 

  • Hashi A, Mazawa S, Kato J, Arita J (1995) Pentobarbital anesthesia during the proestrous afternoon blocks lactotroph proliferation occurring on estrus in female rats. Endocrinology 136:4665–4671

    Article  CAS  PubMed  Google Scholar 

  • Hashizume T, Watanabe R, Inaba Y, Sawai K, Fulop F, Nagy GM (2017) Hypothalamic dopamine is required for salsolinol-induced prolactin secretion in goats. Anim Sci J 88:1588–1594

    Article  CAS  PubMed  Google Scholar 

  • He Z, Fernandez-Fuente M, Strom M, Cheung L, Robinson IC, Le Tissier P (2011) Continuous on-line monitoring of secretion from rodent pituitary endocrine cells using fluorescent protein surrogate markers. J Neuroendocrinol 23:197–207

    Article  CAS  PubMed  Google Scholar 

  • Herbison AE (2016) Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol 12:452–466

    Article  CAS  PubMed  Google Scholar 

  • Herde MK, Iremonger KJ, Constantin S, Herbison AE (2013) GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J Neurosci 33:12689–12697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikake T, Hayashi S, Iguchi T, Sato T (2009) The role of IGF1 on the differentiation of prolactin secreting cells in the mouse anterior pituitary. J Endocrinol 203:231–240

    Article  CAS  PubMed  Google Scholar 

  • Ho Y, Hu P, Peel MT, Chen S, Camara PG, Epstein DJ, Wu H, Liebhaber SA (2020) Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity. Protein Cell 11:565–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodson DJ, Schaeffer M, Romano N, Fontanaud P, Lafont C, Birkenstock J, Molino F, Christian H, Lockey J, Carmignac D et al (2012) Existence of long-lasting experience-dependent plasticity in endocrine cell networks. Nat Commun 3:605

    Article  PubMed  Google Scholar 

  • Horseman ND, Yu-Lee LY (1994) Transcriptional regulation by the helix bundle peptide hormones: growth hormone, prolactin, and hematopoietic cytokines. Endocr Rev 15:627–649

    Article  CAS  PubMed  Google Scholar 

  • Kanematsu S, Sawyer CH (1973) Elevation of plasma prolactin after hypophysial stalk section in the rat. Endocrinology 93:238–241

    Article  CAS  PubMed  Google Scholar 

  • Kawano H, Daikoku S (1987) Functional topography of the rat hypothalamic dopamine neuron systems: retrograde tracing and immunohistochemical study. J Comp Neurol 265:242–253

    Article  CAS  PubMed  Google Scholar 

  • Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT (2009) Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30:790–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Usui H, Tanaka H, Shozu M (2018) Variant prolactin receptor in agalactia and hyperprolactinemia. N Engl J Med 379:2230–2236

    Article  CAS  PubMed  Google Scholar 

  • Kokay IC, Grattan DR (2005) Expression of mRNA for prolactin receptor (long form) in dopamine and pro-opiomelanocortin neurones in the arcuate nucleus of non-pregnant and lactating rats. J Neuroendocrinol 17:827–835

    Article  CAS  PubMed  Google Scholar 

  • Kokay IC, Wyatt A, Phillipps HR, Aoki M, Ectors F, Boehm U, Grattan DR (2018) Analysis of prolactin receptor expression in the murine brain using a novel prolactin receptor reporter mouse. J Neuroendocrinol 30:e12634

    Article  PubMed  Google Scholar 

  • LaPierre MP, Godbersen S, Torres Esteban M, Schad AN, Treier M, Ghoshdastider U, Stoffel M (2021) MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. Endocrinology 162:bqaa220

    Article  PubMed  Google Scholar 

  • Lau-Corona D, Ma H, Vergato C, Sarmento-Cabral A, Del Rio-Moreno M, Kineman RD, Waxman DJ (2022) Constitutively active STAT5b feminizes mouse liver gene expression. Endocrinology 163:bqac046

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Tissier PR, Mollard P (2021) Renewing an old interest: pituitary folliculostellate cells. J Neuroendocrinol 33:e13053

    Article  PubMed  Google Scholar 

  • Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P (2012) Anterior pituitary cell networks. Front Neuroendocrinol 33:252–266

    Article  PubMed  Google Scholar 

  • Le Tissier PR, Hodson DJ, Martin AO, Romano N, Mollard P (2015) Plasticity of the prolactin (PRL) axis: mechanisms underlying regulation of output in female mice. Adv Exp Med Biol 846:139–162

    Article  PubMed  Google Scholar 

  • Le Tissier P, Campos P, Lafont C, Romano N, Hodson DJ, Mollard P (2017) An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat Rev Endocrinol 13:257–267

    Article  PubMed  Google Scholar 

  • Lee LR, Haisenleder DJ, Marshall JC, Smith MS (1989) The role of the suckling stimulus in regulating pituitary prolactin mRNA in the rat. Mol Cell Endocrinol 64:243–249

    Article  CAS  PubMed  Google Scholar 

  • Lehman MN, Coolen LM, Goodman RL (2010) Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151:3479–3489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong DA, Frawley LS, Neill JD (1983) Neuroendocrine control of prolactin secretion. Annu Rev Physiol 49:109–127

    Article  Google Scholar 

  • Liu B, Arbogast LA (2008) Phosphorylation state of tyrosine hydroxylase in the stalk-median eminence is decreased by progesterone in cycling female rats. Endocrinology 149:1462–1469

    Article  CAS  PubMed  Google Scholar 

  • Lookingland KJ, Jarry HD, Moore KE (1987) The metabolism of dopamine in the median eminence reflects the activity of tuberoinfundibular neurons. Brain Res 419:303–310

    Article  CAS  PubMed  Google Scholar 

  • Lyons DJ, Horjales-Araujo E, Broberger C (2010) Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: switch to tonic discharge by thyrotropin-releasing hormone. Neuron 65:217–229

    Article  CAS  PubMed  Google Scholar 

  • Lyons DJ, Hellysaz A, Broberger C (2012) Prolactin regulates tuberoinfundibular dopamine neuron discharge pattern: novel feedback control mechanisms in the lactotrophic axis. J Neurosci 32:8074–8083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma FY, Grattan DR, Goffin V, Bunn SJ (2005) Prolactin-regulated tyrosine hydroxylase activity and messenger ribonucleic acid expression in mediobasal hypothalamic cultures: the differential role of specific protein kinases. Endocrinology 146:93–102

    Article  CAS  PubMed  Google Scholar 

  • Mai LM, Shieh KR, Pan JT (1994) Circadian changes of serum prolactin levels and tuberoinfundibular dopaminergic neuron activities in ovariectomized rats treated with or without estrogen: the role of the suprachiasmatic nuclei. Neuroendocrinology 60:520–526

    Article  CAS  PubMed  Google Scholar 

  • Mena F, Grosvenor CE (1968) Effect of number of pups upon suckling-induced fall in pituitary prolactin concentration and milk ejection in the rat. Endocrinology 82:623–626

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I (1993) Induction of enkephalin in tuberoinfundibular dopaminergic neurons during lactation. Endocrinology 133:2645–2651

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I (1994) Induction of enkephalin in tuberoinfundibular dopaminergic neurons of pregnant, pseudopregnant, lactating and aged female rats. Neuroendocrinology 60:185–193

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I, Lennard DE, Cianchetta P, Merchenthaler A, Bronstein D (1995) Induction of proenkephalin in tuberoinfundibular dopaminergic neurons by hyperprolactinemia: the role of sex steroids. Endocrinology 136:2442–2450

    Article  CAS  PubMed  Google Scholar 

  • Murai I, Ben-Jonathan N (1987) Posterior pituitary lobectomy abolishes the suckling-induced rise in prolactin (PRL): evidence for a PRL-releasing factor in the posterior pituitary. Endocrinology 121:205–211

    Article  CAS  PubMed  Google Scholar 

  • Nahi F, Arbogast LA (2003) Prolactin modulates hypothalamic preproenkephalin, but not proopiomelanocortin, gene expression during lactation. Endocrine 20:115–122

    Article  CAS  PubMed  Google Scholar 

  • Nicoll CS (1980) Ontogeny and evolution of prolactin's functions. Fed Proc 39:2563–2566

    CAS  PubMed  Google Scholar 

  • Noel GL, Suh HK, Frantz AG (1974) Prolactin release during nursing and breast stimulation in postpartum and nonpostpartum subjects. J Clin Endocrinol Metab 38:413–423

    Article  CAS  PubMed  Google Scholar 

  • Oliver C, Mical RS, Porter JC (1977) Hypothalamic-pituitary vasculature: evidence for retrograde blood flow in the pituitary stalk. Endocrinology 101:598–604

    Article  CAS  PubMed  Google Scholar 

  • Orrillo SJ, de Dios N, Asad AS, De Fino F, Imsen M, Romero AC, Zarate S, Ferraris J, Pisera D (2020) Anterior pituitary gland synthesises dopamine from l-3,4-dihydroxyphenylalanine (l-dopa). J Neuroendocrinol 32:e12885

    Article  CAS  PubMed  Google Scholar 

  • Peel MT, Ho Y, Liebhaber SA (2018) Transcriptome analyses of female somatotropes and lactotropes reveal novel regulators of cell identity in the pituitary. Endocrinology 159:3965–3980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peel MT, Ho Y, Liebhaber SA (2020) The transcription factor NR4A2 plays an essential role in driving prolactin expression in female pituitary lactotropes. Endocrinology 161:bqaa046

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillipps HR, Yip SH, Grattan DR (2020) Patterns of prolactin secretion. Mol Cell Endocrinol 502:110679

    Article  CAS  PubMed  Google Scholar 

  • Phillipps HR, Khant Aung Z, Grattan DR (2022) Elevated prolactin secretion during proestrus in mice: absence of a defined surge. J Neuroendocrinol 34:e13129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotsky PM, Neill JD (1982) Interactions of dopamine and thyrotropin-releasing hormone in the regulation of prolactin release in lactating rats. Endocrinology 111:168–173

    Article  CAS  PubMed  Google Scholar 

  • Riddle O, Bates RW, Dykshorn SW (1933) The preparation, identification and assay of prolactin - a hormone of the anterior pituitary. Am J Phys 105:191–216

    CAS  Google Scholar 

  • Romano N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, Tronche F, Bonnefont X, Le Tissier P, Bunn SJ et al (2013) Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci 33:4424–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, Alpar A, Mulder J, Clotman F, Keimpema E et al (2017) Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci 20:176–188

    Article  CAS  PubMed  Google Scholar 

  • Romero-Fernandez W, Borroto-Escuela DO, Vargas-Barroso V, Narvaez M, Di Palma M, Agnati LF, Larriva Sahd J, Fuxe K (2014) Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons. Eur J Histochem 58:2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuff KG, Hentges ST, Kelly MA, Binart N, Kelly PA, Iuvone PM, Asa SL, Low MJ (2002) Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J Clin Invest 110:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seilicovich A (2010) Cell life and death in the anterior pituitary gland: role of oestrogens. J Neuroendocrinol 22:758–764

    Article  CAS  PubMed  Google Scholar 

  • Sellix MT, Egli M, Poletini MO, McKee DT, Bosworth MD, Fitch CA, Freeman ME (2006) Anatomical and functional characterization of clock gene expression in neuroendocrine dopaminergic neurons. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 290:R1309–R1323

    Article  CAS  PubMed  Google Scholar 

  • Selmanoff M (1985) Rapid effects of hyperprolactinemia on basal prolactin secretion and dopamine turnover in the medial and lateral median eminence. Endocrinology 116:1943–1952

    Article  CAS  PubMed  Google Scholar 

  • Selmanoff M, Wise PM (1981) Decreased dopamine turnover in the median eminence in response to suckling in the lactating rat. Brain Res 212:101–115

    Article  CAS  PubMed  Google Scholar 

  • Shanti AS, Subramanian MG, Savoy-Moore RT, Kruger ML, Moghissi KS (1995) Attenuation of the magnitude of suckling-induced prolactin release with advancing lactation: mechanisms. Life Sci 56:259–266

    Article  CAS  PubMed  Google Scholar 

  • Shin SH (1980) Physiological evidence for the existence of prolactin releasing factor: stress-induced prolactin secretion is not linked to dopaminergic receptors. Neuroendocrinology 31:375–379

    Article  CAS  PubMed  Google Scholar 

  • Silva KSC, Aquino NSS, Gusmao DO, Henriques PC, Reis AM, Szawka RE (2020) Reduced dopaminergic tone during lactation is permissive to the hypothalamic stimulus for suckling-induced prolactin release. J Neuroendocrinol 32:e12880

    Article  CAS  PubMed  Google Scholar 

  • Skov LJ, Ratner C, Hansen NW, Thompson JJ, Egerod KL, Burm H, Dalboge LS, Hedegaard MA, Brakebusch C, Pers TH et al (2019) RhoA in tyrosine hydroxylase neurones regulates food intake and body weight via altered sensitivity to peripheral hormones. J Neuroendocrinol 31:e12761

    Article  PubMed  Google Scholar 

  • Smith MS, Freeman ME, Neill JD (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96:219–226

    Article  CAS  PubMed  Google Scholar 

  • Stagkourakis S, Kim H, Lyons DJ, Broberger C (2016) Dopamine autoreceptor regulation of a hypothalamic dopaminergic network. Cell Rep 15:735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagkourakis S, Perez CT, Hellysaz A, Ammari R, Broberger C (2018) Network oscillation rules imposed by species-specific electrical coupling. elife 7:e33144

    Article  PubMed  PubMed Central  Google Scholar 

  • Stagkourakis S, Dunevall J, Taleat Z, Ewing AG, Broberger C (2019) Dopamine release dynamics in the tuberoinfundibular dopamine system. J Neurosci 39:4009–4022

    Article  PubMed  PubMed Central  Google Scholar 

  • Stagkourakis S, Smiley KO, Williams P, Kakadellis S, Ziegler K, Bakker J, Brown RSE, Harkany T, Grattan DR, Broberger C (2020) A neuro-hormonal circuit for paternal behavior controlled by a hypothalamic network oscillation. Cell 182:960–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo FK, Snyder N, Usdin TB, Hoffman GE (2010) A direct neuronal connection between the subparafascicular and ventrolateral arcuate nuclei in non-lactating female rats. Could this pathway play a role in the suckling-induced prolactin release? Endocrine 37:62–70

    Article  CAS  PubMed  Google Scholar 

  • Szawka RE, Helena CV, Rodovalho GV, Monteiro PM, Franci CR, Anselmo-Franci JA (2005) Locus coeruleus norepinephrine regulates the surge of prolactin during oestrus. J Neuroendocrinol 17:639–648

    Article  CAS  PubMed  Google Scholar 

  • Szawka RE, Ribeiro AB, Leite CM, Helena CV, Franci CR, Anderson GM, Hoffman GE, Anselmo-Franci JA (2010) Kisspeptin regulates prolactin release through hypothalamic dopaminergic neurons. Endocrinology 151:3247–3257

    Article  CAS  PubMed  Google Scholar 

  • Terkel J, Blake CA, Sawyer CH (1972) Serum prolactin levels in lactating rats after suckling or exposure to ether. Endocrinology 91:49–53

    Article  CAS  PubMed  Google Scholar 

  • Thörn Pérez C, Ferraris J, van Lunteren JA, Hellysaz A, Iglesias MJ, Broberger C (2020) Adaptive Resetting of Tuberoinfundibular Dopamine (TIDA) Network Activity During Lactation in Mice. J Neurosci 40:3203–3216

    Article  PubMed  PubMed Central  Google Scholar 

  • Tierney T, Robinson IC (2002) Increased lactotrophs despite decreased somatotrophs in the dwarf (dw/dw) rat: a defect in the regulation of lactotroph/somatotroph cell fate? J Endocrinol 175:435–446

    Article  CAS  PubMed  Google Scholar 

  • Tonkowicz PA, Voogt JL (1983) Termination of prolactin surges with development of placental lactogen secretion in the pregnant rat. Endocrinology 113:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Toth BE, Homicsko K, Radnai B, Maruyama W, DeMaria JE, Vecsernyes M, Fekete MI, Fulop F, Naoi M, Freeman ME et al (2001) Salsolinol is a putative endogenous neuro-intermediate lobe prolactin-releasing factor. J Neuroendocrinol 13:1042–1050

    Article  CAS  PubMed  Google Scholar 

  • Valverde RC, Chieffo V, Reichlin S (1972) Prolactin releasing factor in porcine and rat hypothalamic tissue. Endocrinology 91:982–993

    Article  CAS  PubMed  Google Scholar 

  • Vekemans M, Delvoye P, L'Hermite M, Robyn C (1977) Serum prolactin levels during the menstrual cycle. J Clin Endocrinol Metab 44:989–993

    Article  CAS  PubMed  Google Scholar 

  • Wang HJ, Hoffman GE, Smith MS (1993) Suppressed tyrosine hydroxylase gene expression in the tuberoinfundibular dopaminergic system during lactation. Endocrinology 133:1657–1663

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Seo H, Suganuma N, Matsui N, Nakane T, Kuwayama A, Kageyama N (1986) Effect of estrogen on prolactin mRNA in the rat pituitary. Analysis by in situ hybridization and immunohistochemistry. Neuroendocrinology 42:494–497

    Article  CAS  PubMed  Google Scholar 

  • Yip SH, York J, Hyland B, Bunn SJ, Grattan DR (2018) Incomplete concordance of dopamine transporter Cre (DAT(IREScre))-mediated recombination and tyrosine hydroxylase immunoreactivity in the mouse forebrain. J Chem Neuroanat 90:40–48

    Article  CAS  PubMed  Google Scholar 

  • Yip SH, Romano N, Gustafson P, Hodson DJ, Williams EJ, Kokay IC, Martin AO, Mollard P, Grattan DR, Bunn SJ (2019) Elevated prolactin during pregnancy drives a phenotypic switch in mouse hypothalamic dopaminergic neurons. Cell Rep 26(1787–1799):e1785

    Google Scholar 

  • Yip SH, Araujo-Lopes R, Szawka RE, York J, Hyland B, Grattan DR, Bunn SJ (2020) Morphological plasticity of the tuberoinfundibular dopaminergic neurones in the rat during the oestrous cycle and lactation. J Neuroendocrinol 32:e12884

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, van den Pol AN (2015) Dopamine/tyrosine hydroxylase neurons of the hypothalamic arcuate nucleus release GABA, communicate with dopaminergic and other arcuate neurons, and respond to dynorphin, met-enkephalin, and oxytocin. J Neurosci 35:14966–14982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, van den Pol AN (2016) Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat Neurosci 19:1341–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Gao J, Zhang D, Liu H, Gou K, Cui S (2021) miR-375 acts as a novel factor modulating pituitary prolactin synthesis through Rasd1 and Esr1. J Endocrinol 250:25–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael E. Szawka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szawka, R.E., Bunn, S.J., Le Tissier, P., Yip, S.H., Grattan, D.R. (2024). Lactation and the Control of the Prolactin Secretion. In: Brunton, P.J., Grattan, D.R. (eds) Neuroendocrine Regulation of Mammalian Pregnancy and Lactation. Masterclass in Neuroendocrinology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-51138-7_7

Download citation

Publish with us

Policies and ethics