Skip to main content

Regulation of the Hypothalamo-Pituitary-Adrenal Axis in Pregnancy and Lactation

  • Chapter
  • First Online:
Neuroendocrine Regulation of Mammalian Pregnancy and Lactation

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 15))

  • 121 Accesses

Abstract

Physiological and behavioural responses to stress are critical to ensure individual survival in all species. This is even more important when the survival of the offspring depends on parental protection from predators and other environmental challenges. However, exaggerated maternal stress responses and enhanced glucocorticoid secretion can be deleterious to the development of the offspring, with negative impacts on the developing brain, as well as on the provision of maternal care and nourishment. Thus, in both late gestation and lactation, mothers exhibit a period of stress hyporesponsiveness that is regulated by both common and divergent mechanisms that are appropriate for the physiological, hormonal, and behavioural environment of pregnancy and lactation. This chapter will describe our current understanding of the mechanisms in the peripartum period that underlie adaptations of the neuroendocrine stress system—the hypothalamo-pituitary-adrenal (HPA) axis. Changes in central brain structures regulating HPA axis activity and the role of steroid and peptide hormones in maintaining blunted responses to stress will be discussed. The importance of the offspring’s presence and suckling stimulation on the maintenance of reduced stress responses in lactation will also be considered. Finally, implications of this research for postpartum depression and other mood disorders characterized by dysregulated stress responses in human mothers will be examined.

Author websites:

https://www.ed.ac.uk/discovery-brain-sciences/our-staff/research-groups/dr-paula-brunton

https://douglas.research.mcgill.ca/claire-dominique-walker

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrati D, Zuluaga MJ, Fernández-Guasti A, Meikle A, Ferreira A (2008) Maternal condition reduces fear behaviors but not the endocrine response to an emotional threat in virgin female rats. Horm Behav 53:232–240

    Article  CAS  PubMed  Google Scholar 

  • Altemus M, Deuster PA, Galliven E, Carter CS, Gold PW (1995) Suppression of hypothalmic-pituitary-adrenal axis responses to stress in lactating women. J Clin Endocrinol Metab 80:2954–2959

    CAS  PubMed  Google Scholar 

  • Altemus M, Redwine LS, Leong YM, Frye CA, Porges SW, Carter CS (2001) Responses to laboratory psychosocial stress in postpartum women. Psychosom Med 63:814–821

    Article  CAS  PubMed  Google Scholar 

  • Atkinson HC, Waddell BJ (1995) The hypothalamic-pituitary-adrenal axis in rat pregnancy and lactation: circadian variation and interrelationship of plasma adrenocorticotropin and corticosterone. Endocrinology 136:512–520

    Article  CAS  PubMed  Google Scholar 

  • Augustine RA, Kokay IC, Andrews ZB, Ladyman SR, Grattan DR (2003) Quantitation of prolactin receptor mRNA in the maternal rat brain during pregnancy and lactation. J Mol Endocrinol 31:221–232

    Article  CAS  PubMed  Google Scholar 

  • Bales J, Brunton PJ, Russell JA (2006) Suppressed hypothalamo-pituitary-adrenal (HPA) responses to central neuropeptide Y (NPY) in late pregnancy and the role of endogenous opioids. Front Neuroendocrinol 27:55

    Article  Google Scholar 

  • Barha CK, Lieblich SE, Chow C, Galea LA (2015) Multiparity-induced enhancement of hippocampal neurogenesis and spatial memory depends on ovarian hormone status in middle age. Neurobiol Aging 36:2391–2405

    Article  CAS  PubMed  Google Scholar 

  • Bosch OJ, Müsch W, Bredewold R, Slattery DA, Neumann ID (2007a) Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: implications for postpartum mood disorder. Psychoneuroendocrinology 32:267–278

    Article  CAS  PubMed  Google Scholar 

  • Bosch OJ, Sartori SB, Singewald N, Neumann ID (2007b) Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: regulation by oxytocin. Stress 10:261–270

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS (1984) A quantitative analysis of the roles of dosage, sequence, and duration of estradiol and progesterone exposure in the regulation of maternal behavior in the rat. Endocrinology 114:930–940

    Article  CAS  PubMed  Google Scholar 

  • Brummelte S, Galea LA (2010) Depression during pregnancy and postpartum: contribution of stress and ovarian hormones. Prog Neuropsychopharmacol Biol Psychiatry 34:766–776

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, Bales J, Russell JA (2006) Neuroendocrine stress but not feeding responses to centrally administered neuropeptide Y are suppressed in pregnant rats. Endocrinology 147:3737–3745

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, McKay AJ, Ochedalski T, Piastowska A, Rebas E, Lachowicz A, Russell JA (2009) Central opioid inhibition of neuroendocrine stress responses in pregnancy in the rat is induced by the neurosteroid allopregnanolone. J Neurosci 29:6449–6460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunton PJ, Meddle SL, Ma S, Ochedalski T, Douglas AJ, Russell JA (2005) Endogenous opioids and attenuated hypothalamic-pituitary-adrenal axis responses to immune challenge in pregnant rats. J Neurosci 25:5117–5126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunton PJ, Russell JA (2003) Hypothalamic-pituitary-adrenal responses to centrally administered orexin-A are suppressed in pregnant rats. J Neuroendocrinol 15:633–637

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, Russell JA (2010) Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: sex specific effects. J Neuroendocrinol 22:258–271

    Article  CAS  PubMed  Google Scholar 

  • Brunton PJ, Russell JA, Douglas AJ (2008) Adaptive responses of the maternal hypothalamic-pituitary-adrenal axis during pregnancy and lactation. J Neuroendocrinol 20:764–776

    Article  CAS  PubMed  Google Scholar 

  • Callander GE, Bathgate RA (2010) Relaxin family peptide systems and the central nervous system. Cell Mol Life Sci 67:2327–2341

    Article  CAS  PubMed  Google Scholar 

  • Cena L, Gigantesco A, Mirabella F, Palumbo G, Trainini A, Stefana A (2021) Prevalence of maternal postnatal anxiety and its association with demographic and socioeconomic factors: a multicentre study in Italy. Front Psychiatry 12:737666

    Article  PubMed  PubMed Central  Google Scholar 

  • Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, Purdy RH, Grisenti P, Biggio G (1998) Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Nat Acad Sci USA 95:13284–13289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullinan WE, Ziegler DR, Herman JP (2008) Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213:63–72

    Article  CAS  PubMed  Google Scholar 

  • Cunningham ETJ, Sawchenko PE (1988) Anatomical specificity of noradrenergic inputs to the paraventricular nucleus and supraoptic nucleus of the rat hypothalamus. J Comp Neurol 274:60–76

    Article  PubMed  Google Scholar 

  • da Costa AP, Kampa RJ, Windle RJ, Ingram CD, Lightman SL (1997) Region-specific immediate-early gene expression following the administration of corticotropin-releasing hormone in virgin and lactating rats. Brain Res 770:151–162

    Article  PubMed  Google Scholar 

  • da Costa AP, Ma X, Ingram CD, Lightman SL, Aguilera G (2001) Hypothalamic and amygdaloid corticotropin-releasing hormone (CRH) and CRH receptor-1 mRNA expression in the stress-hyporesponsive late pregnant and early lactating rat. Brain Res Mol Brain Res 91:119–130

    Article  PubMed  Google Scholar 

  • da Costa AP, Wood S, Ingram CD, Lightman SL (1996) Region-specific reduction in stress-induced c-fos mRNA expression during pregnancy and lactation. Brain Res 742:177–184

    Article  PubMed  Google Scholar 

  • de Rezende MG, Garcia-Leal C, de Figueiredo FP, Cavalli Rde C, Spanghero MS, Barbieri MA, Bettiol H, de Castro M, Del-Ben CM (2016) Altered functioning of the HPA axis in depressed postpartum women. J Affect Disord 193:249–256

    Article  PubMed  Google Scholar 

  • Deschamps S, Woodside B, Walker CD (2003) Pups presence eliminates the stress hyporesponsiveness of early lactating females to a psychological stress representing a threat to the pups. J Neuroendocrinol 15:486–497

    Article  CAS  PubMed  Google Scholar 

  • Dickens MJ, Pawluski JL (2018) The HPA axis during the perinatal period: Implications for perinatal depression. Endocrinology 159:3737–3746

    Article  CAS  PubMed  Google Scholar 

  • Donner N, Bredewold R, Maloumby R, Neumann ID (2007) Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci 25:1804–1814

    Article  PubMed  Google Scholar 

  • Douglas A, Meddle S, Toschi N, Bosch O, Neumann I (2005) Reduced activity of the noradrenergic system in the paraventricular nucleus at the end of pregnancy: implications for stress hyporesponsiveness. J Neuroendocrinol 17:40–48

    Article  CAS  PubMed  Google Scholar 

  • Douglas AJ, Brunton PJ, Bosch OJ, Russell JA, Neumann ID (2003) Neuroendocrine responses to stress in mice: hyporesponsiveness in pregnancy and parturition. Endocrinology 144:5268–5276

    Article  CAS  PubMed  Google Scholar 

  • Douglas AJ, Johnstone H, Brunton P, Russell JA (2000) Sex-steroid induction of endogenous opioid inhibition on oxytocin secretory responses to stress. J Neuroendocrinol 12:343–350

    Article  CAS  PubMed  Google Scholar 

  • Douglas AJ, Johnstone HA, Wigger A, Landgraf R, Russell JA, Neumann ID (1998) The role of endogenous opioids in neurohypophysial and hypothalamo-pituitary-adrenal axis hormone secretory responses to stress in pregnant rats. J Endocrinol 158:285–293

    Article  CAS  PubMed  Google Scholar 

  • Douglas AJ, Russell JA (1994) Corticotrophin-releasing hormone, proenkephalin A and oxytocin mRNA’s in the paraventricular nucleus during pregnancy and parturition in the rat. Gene Ther 1(Suppl 1):S85

    PubMed  Google Scholar 

  • Featherstone RE, Fleming AS, Ivy GO (2000) Plasticity in the maternal circuit: effects of experience and partum condition on brain astrocyte number in female rats. Behav Neurosci 114:158–172

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo HF, Bruestle A, Bodie B, Dolgas CM, Herman JP (2003) The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur J Neurosci 18:2357–2364

    Article  PubMed  Google Scholar 

  • Fleming AS, Cheung U, Myhal N, Kessler Z (1989) Effects of maternal hormones on ‘timidity’ and attraction to pup-related odors in female rats. Physiol Behav 46:449–453

    Article  CAS  PubMed  Google Scholar 

  • Fleming AS, Steiner M, Corter C (1997) Cortisol, hedonics, and maternal responsiveness in human mothers. Horm Behav 32:85–98

    Article  CAS  PubMed  Google Scholar 

  • Fodor A, Pintér O, Domokos A, Langnaese K, Barna I, Engelmann M, Zelena D (2013) Blunted HPA axis response in lactating, vasopressin-deficient Brattleboro rats. J Endocrinol 219:89–100

    Article  CAS  PubMed  Google Scholar 

  • Frim DM, Emanuel RL, Robinson BG, Smas CM, Adler GK, Majzoub JA (1988) Characterization and gestational regulation of corticotropin-releasing hormone messenger RNA in human placenta. J Clin Invest 82:287–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgescu T, Swart JM, Grattan DR, Brown RSE (2021) The prolactin family of hormones as regulators of maternal mood and behavior. Front Glob Womens Health 2:767467

    Article  PubMed  PubMed Central  Google Scholar 

  • Glynn LM, Davis EP, Sandman CA (2013) New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides 47:363–370

    Article  CAS  PubMed  Google Scholar 

  • Goland RS, Wardlaw SL, Blum M, Tropper PJ, Stark RI (1988) Biologically active corticotropin-releasing hormone in maternal and fetal plasma during pregnancy. Am J Obstet Gynecol 159:884–890

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Jenkins JM, Steiner M, Fleming AS (2009) The relation between early life adversity, cortisol awakening response and diurnal salivary cortisol levels in postpartum women. Psychoneuroendocrinology 34:76–86

    Article  CAS  PubMed  Google Scholar 

  • Grattan DR, Steyn FJ, Kokay IC, Anderson GM, Bunn SJ (2008) Pregnancy-induced adaptation in the neuroendocrine control of prolactin secretion. J Neuroendocrinol 20:497–507

    Article  CAS  PubMed  Google Scholar 

  • Groer MW, Davis MW, Hemphill J (2002) Postpartum stress: current concepts and the possible protective role of breastfeeding. J Obstet Gynecol Neonatal Nurs 31:411–417

    Article  PubMed  Google Scholar 

  • Gustafson P, Bunn SJ, Grattan DR (2017a) The role of prolactin in the suppression of Crh mRNA expression during pregnancy and lactation in the mouse. J Neuroendocrinol 29

    Google Scholar 

  • Gustafson P, Kokay I, Sapsford T, Bunn S, Grattan D (2017b) Prolactin regulation of the HPA axis is not mediated by a direct action upon CRH neurons: evidence from the rat and mouse. Brain Struct Funct 222:3191–3204

    Article  CAS  PubMed  Google Scholar 

  • Gustafson P, Ladyman SR, McFadden S, Larsen C, Khant Aung Z, Brown RSE, Bunn SJ, Grattan DR (2020) Prolactin receptor-mediated activation of pSTAT5 in the pregnant mouse brain. J Neuroendocrinol 32:e12901

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen-Sorri AL, Kirkinen P, Sorri M, Anttonen H, Tuimala R (1991) No effect of experimental noise exposure on human pregnancy. Obstet Gynecol 77:611–615

    CAS  PubMed  Google Scholar 

  • Hatton GI, Zhao YQ (2002) Peripartum interneuronal coupling in the supraoptic nucleus. Brain Res 932:120–123

    Article  CAS  PubMed  Google Scholar 

  • Heiman ML, Ahima RS, Craft LS, Schoner B, Stephens TW, Flier JS (1997) Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 138:3859–3863

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs M, Meinlschmidt G, Neumann I, Wagner S, Kirschbaum C, Ehlert U, Hellhammer DH (2001) Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. J Clin Endocrinol Metab 86:4798–4804

    Article  CAS  PubMed  Google Scholar 

  • Herbison AE (2001) Physiological roles for the neurosteroid allopregnanolone in the modulation of brain function during pregnancy and parturition. Prog Brain Res 133:39–47

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE, Watson SJ (1994) Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression. J Neuroendocrinol 6:433–442

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Nawreen N, Smail MA, Cotella EM (2020) Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress 23:617–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Gonzalez M, Prieto-Beracoechea C, Navarro-Meza M, Ramos-Guevara JP, Reyes-Cortes R, Guevara MA (2005) Prefrontal and tegmental electrical activity during olfactory stimulation in virgin and lactating rats. Physiol Behav 83:749–758

    Article  CAS  PubMed  Google Scholar 

  • Hill PD, Chatterton RT Jr, Aldag JC (2003) Neuroendocrine responses to stressors in lactating and nonlactating mammals: a literature review. Biol Res Nurs 5:79–86

    Article  PubMed  Google Scholar 

  • Hillerer KM, Jacobs VR, Fischer T, Aigner L (2014) The maternal brain: an organ with peripartal plasticity. Neural Plast 2014:574159

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillerer KM, Woodside B, Parkinson E, Long H, Verlezza S, Walker CD (2018) Gating of the neuroendocrine stress responses by stressor salience in early lactating female rats is independent of infralimbic cortex activation and plasticity. Stress 21:217–228

    Article  PubMed  Google Scholar 

  • Johnson SB, Emmons EB, Lingg RT, Anderson RM, Romig-Martin SA, LaLumiere RT, Narayanan NS, Viau V, Radley JJ (2019) Prefrontal-bed nucleus circuit modulation of a passive coping response set. J Neurosci 39:1405–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone HA, Wigger A, Douglas AJ, Neumann ID, Landgraf R, Seckl JR, Russell JA (2000) Attenuation of hypothalamic-pituitary-adrenal axis stress responses in late pregnancy: changes in feedforward and feedback mechanisms. J Neuroendocrinol 12:811–822

    Article  CAS  PubMed  Google Scholar 

  • Jolley SN, Elmore S, Barnard KE, Carr DB (2007) Dysregulation of the hypothalamic-pituitary-adrenal axis in postpartum depression. Biol Res Nurs 8:210–222

    Article  CAS  PubMed  Google Scholar 

  • Jurek B, Slattery DA, Hiraoka Y, Liu Y, Nishimori K, Aguilera G, Neumann ID, van den Burg EH (2015) Oxytocin regulates stress-induced Crf gene transcription through CREB-regulated transcription coactivator 3. J Neurosci 35:12248–12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyani M, Callahan P, Janik JM, Shi H (2017) Effects of pup separation on stress response in postpartum female rats. Int J Mol Sci 18

    Google Scholar 

  • Kammerer M, Adams D, Castelberg Bv B, Glover V (2002) Pregnant women become insensitive to cold stress. BMC Pregnancy Childbirth 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Yamaguchi M, Murakami T, Shima K, Murata Y, Kishi K (1997) The placenta is not the main source of leptin production in pregnant rat: gestational profile of leptin in plasma and adipose tissues. Biochem Biophys Res Commun 240:798–802

    Article  CAS  PubMed  Google Scholar 

  • Kim P, Feldman R, Mayes LC, Eicher V, Thompson N, Leckman JF, Swain JE (2011) Breastfeeding, brain activation to own infant cry, and maternal sensitivity. J Child Psychol Psychiatry 52:907–915

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim P, Leckman JF, Mayes LC, Feldman R, Wang X, Swain JE (2010) The plasticity of human maternal brain: longitudinal changes in brain anatomy during the early postpartum period. Behav Neurosci 124:695–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinsley CH, Lambert KG (2008) Reproduction-induced neuroplasticity: natural behavioural and neuronal alterations associated with the production and care of offspring. J Neuroendocrinol 20:515–525

    Article  CAS  PubMed  Google Scholar 

  • Kiss A, Palkovits M, Aguilera G (1996) Neural regulation of corticotropin releasing hormone (CRH) and CRH receptor mRNA in the hypothalamic paraventricular nucleus in the rat. J Neuroendocrinol 8:103–112

    Article  CAS  PubMed  Google Scholar 

  • Kitay JI, Coyne MD, Newsom W, Nelson R (1965) Relation of the ovary to adrenal corticosterone production and adrenal enzyme activity in the rat. Endocrinology 77:902–908

    Article  CAS  PubMed  Google Scholar 

  • Kokay IC, Bull PM, Davis RL, Ludwig M, Grattan DR (2006) Expression of the long form of the prolactin receptor in magnocellular oxytocin neurons is associated with specific prolactin regulation of oxytocin neurons. Am J Physiol Regul Integr Comp Physiol 290:R1216–R1225

    Article  CAS  PubMed  Google Scholar 

  • Leng G, Mansfield S, Bicknell RJ, Brown D, Chapman C, Hollingsworth S, Ingram CD, Marsh MI, Yates JO, Dyer RG (1987) Stress-induced disruption of parturition in the rat may be mediated by endogenous opioids. J Endocrinol 114:247–252

    Article  CAS  PubMed  Google Scholar 

  • Leuner B, Gould E (2010) Dendritic growth in medial prefrontal cortex and cognitive flexibility are enhanced during the postpartum period. J Neurosci 30:13499–13503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liggins GC (1994) The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev 6:141–150

    Article  CAS  PubMed  Google Scholar 

  • Lightman SL, Windle RJ, Wood SA, Kershaw YM, Shanks N, Ingram CD (2001) Peripartum plasticity within the hypothalamo-pituitary-adrenal axis. Prog Brain Res 133:111–129

    Article  CAS  PubMed  Google Scholar 

  • Lightman SL, Young WS III (1989) Lactation inhibits stress-mediated secretion of corticosterone and oxytocin and hypothalamic accumulation of corticotropin-releasing factor and enkephalin messenger ribonucleic acids. Endocrinology 124:2358–2364

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JR, Nieman LK (2005) The hypothalamic-pituitary-adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr Rev 26:775–799

    Article  CAS  PubMed  Google Scholar 

  • Lowrance SA, Ionadi A, McKay E, Douglas X, Johnson JD (2016) Sympathetic nervous system contributes to enhanced corticosterone levels following chronic stress. Psychoneuroendocrinology 68:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Shipston MJ, Morilak D, Russell JA (2005) Reduced hypothalamic vasopressin secretion underlies attenuated adrenocorticotropin stress responses in pregnant rats. Endocrinology 146:1626–1637

    Article  CAS  PubMed  Google Scholar 

  • Magiakou MA, Mastorakos G, Rabin D, Dubbert B, Gold PW, Chrousos GP (1996a) Hypothalamic corticotropin-releasing hormone suppression during the postpartum period: implications for the increase in psychiatric manifestations at this time. J Clin Endocrinol Metab 81:1912–1917

    CAS  PubMed  Google Scholar 

  • Magiakou MA, Mastorakos G, Rabin D, Margioris AN, Dubbert B, Calogero AE, Tsigos C, Munson PJ, Chrousos GP (1996b) The maternal hypothalamic-pituitary-adrenal axis in the third trimester of human pregnancy. Clin Endocrinol (Oxf) 44:419–428

    Article  CAS  PubMed  Google Scholar 

  • Majewska MD (1990) Steroid regulation of the GABAA receptor: ligand binding, chloride transport and behaviour. Ciba Found Symp 153:83–97

    CAS  PubMed  Google Scholar 

  • Mann PE, Bridges RS (2001) Lactogenic hormone regulation of maternal behavior. Prog Brain Res 133:251–262

    Article  CAS  PubMed  Google Scholar 

  • Mastorakos G, Ilias I (2003) Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci 997:136–149

    Article  CAS  PubMed  Google Scholar 

  • Mattheij JA, Gruisen EF, Swarts JJ (1979) The suckling-induced rise of plasma prolactin in lactating rats: its dependence on stage of lactation and litter size. Horm Res 11:325–336

    Article  CAS  PubMed  Google Scholar 

  • McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R (1995) A placental clock controlling the length of human pregnancy. Nat Med 1:460–463

    Article  CAS  PubMed  Google Scholar 

  • Meinlschmidt G, Martin C, Neumann ID, Heinrichs M (2010) Maternal cortisol in late pregnancy and hypothalamic-pituitary-adrenal reactivity to psychosocial stress postpartum in women. Stress 13:163–171

    Article  CAS  PubMed  Google Scholar 

  • Melón LC, Hooper A, Yang X, Moss SJ, Maguire J (2018) Inability to suppress the stress-induced activation of the HPA axis during the peripartum period engenders deficits in postpartum behaviors in mice. Psychoneuroendocrinology 90:182–193

    Article  PubMed  Google Scholar 

  • Myers MM, Denenberg VH, Thoman E, Holloway WR, Bowerman DR (1975) The effects of litter size on plasma corticosterone and prolactin response to ether stress in the lactating rat. Neuroendocrinology 19:54–58

    Article  CAS  PubMed  Google Scholar 

  • Naik RR, de Jong TR (2017) Transient and persistent behavioral and molecular changes in primiparous female Wistar rats. Eur J Neurosci 45:797–804

    Article  PubMed  Google Scholar 

  • Nakamura Y, Okada T, Morikawa M, Yamauchi A, Sato M, Ando M, Ozaki N (2020) Perinatal depression and anxiety of primipara is higher than that of multipara in Japanese women. Sci Rep 10:17060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nephew BC, Bridges RS, Lovelock DF, Byrnes EM (2009a) Enhanced maternal aggression and associated changes in neuropeptide gene expression in multiparous rats. Behav Neurosci 123:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nephew BC, Caffrey MK, Felix-Ortiz AC, Ferris CF, Febo M (2009b) Blood oxygen level-dependent signal responses in corticolimbic ‘emotions’ circuitry of lactating rats facing intruder threat to pups. Eur J Neurosci 30:934–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann ID, Bosch OJ, Toschi N, Torner L, Douglas AJ (2003) No stress response of the hypothalamo-pituitary-adrenal axis in parturient rats: lack of involvement of brain oxytocin. Endocrinology 144:2473–2479

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Johnstone HA, Hatzinger M, Liebsch G, Shipston M, Russell JA, Landgraf R, Douglas AJ (1998) Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes. J Physiol 508:289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann ID, Krömer SA, Bosch OJ (2005) Effects of psycho-social stress during pregnancy on neuroendocrine and behavioural parameters in lactation depend on the genetically determined stress vulnerability. Psychoneuroendocrinology 30:791–806

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Torner L, Wigger A (2000a) Brain oxytocin: differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience 95:567–575

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Toschi N, Ohl F, Torner L, Kromer SA (2001) Maternal defence as an emotional stressor in female rats: correlation of neuroendocrine and behavioural parameters and involvement of brain oxytocin. Eur J Neurosci 13:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Wigger A, Torner L, Holsboer F, Landgraf R (2000b) Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J Neuroendocrinol 12:235–243

    Article  CAS  PubMed  Google Scholar 

  • O’Keane V, Lightman S, Patrick K, Marsh M, Papadopoulos AS, Pawlby S, Seneviratne G, Taylor A, Moore R (2011) Changes in the maternal hypothalamic-pituitary-adrenal axis during the early puerperium may be related to the postpartum ‘blues’. J Neuroendocrinol 23:1149–1155

    Article  PubMed  Google Scholar 

  • Oates M, Woodside B, Walker CD (2000) Chronic leptin administration in developing rats reduces stress responsiveness partly through changes in maternal behavior. Horm Behav 37:366–376

    Article  CAS  PubMed  Google Scholar 

  • Obel C, Hedegaard M, Henriksen TB, Secher NJ, Olsen J, Levine S (2005) Stress and salivary cortisol during pregnancy. Psychoneuroendocrinology 30:647–656

    Article  CAS  PubMed  Google Scholar 

  • Ochedalski T, Lachowicz A (2004) Maternal and fetal hypothalamo-pituitary-adrenal axis: different response depends upon the mode of parturition. Neuro Endocrinol Lett 25:278–282

    PubMed  Google Scholar 

  • Ochedalski T, Zylińska K, Laudański T, Lachowicz A (2001) Corticotrophin-releasing hormone and ACTH levels in maternal and fetal blood during spontaneous and oxytocin-induced labour. Eur J Endocrinol 144:117–121

    Article  CAS  PubMed  Google Scholar 

  • Okamoto E, Takagi T, Makino T, Sata H, Iwata I, Nishino E, Mitsuda N, Sugita N, Otsuki Y, Tanizawa O (1989) Immunoreactive corticotropin-releasing hormone, adrenocorticotropin and cortisol in human plasma during pregnancy and delivery and postpartum. Horm Metab Res 21:566–572

    Article  CAS  PubMed  Google Scholar 

  • Opala EA, Verlezza S, Long H, Rusu D, Woodside B, Walker CD (2019) Experience of adversity during a first lactation modifies prefrontal cortex morphology in primiparous female rats: lack of long term effects on a subsequent lactation. Neuroscience 417:95–106

    Article  CAS  PubMed  Google Scholar 

  • Orchard ER, Ward PGD, Sforazzini F, Storey E, Egan GF, Jamadar SD (2020) Relationship between parenthood and cortical thickness in late adulthood. PLoS One 15:e0236031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens PC, Smith R, Brinsmead MW, Hall C, Rowley M, Hurt D, Lovelock M, Chan EC, Cubis J, Lewin T (1987) Postnatal disappearance of the pregnancy-associated reduced sensitivity of plasma cortisol to feedback inhibition. Life Sci 41:1745–1750

    Article  CAS  PubMed  Google Scholar 

  • Patchev VK, Hassan AHS, Holsboer F, Almeida OFX (1996) The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology 15:533–540

    Article  CAS  PubMed  Google Scholar 

  • Pawluski JL, Charlier TD, Lieblich SE, Hammond GL, Galea LA (2009) Reproductive experience alters corticosterone and CBG levels in the rat dam. Physiol Behav 96:108–114

    Article  CAS  PubMed  Google Scholar 

  • Perani CV, Langgartner D, Uschold-Schmidt N, Füchsl AM, Neumann ID, Reber SO, Slattery DA (2017) Adrenal gland plasticity in lactating rats and mice is sufficient to maintain basal hypersecretion of corticosterone. Stress 20:303–311

    CAS  PubMed  Google Scholar 

  • Pérez-Hernández M, Hernández-González M, Hidalgo-Aguirre RM, Guevara MA, Amezcua-Gutiérrez C, Sandoval-Carrillo IK (2021) Multiparity decreases the effect of distractor stimuli on a working memory task: an EEG study. Soc Neurosci 16:277–288

    Article  Google Scholar 

  • Petraglia F, Baraldi M, Giarrè G, Facchinetti F, Santi M, Volpe A, Genazzani AR (1985) Opioid peptides of the pituitary and hypothalamus: changes in pregnant and lactating rats. J Endocrinol 105:239–245

    Article  CAS  PubMed  Google Scholar 

  • Radley JJ, Gosselink KL, Sawchenko PE (2009) A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J Neurosci 29:7330–7340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rima BN, Bardi M, Friedenberg JM, Christon LM, Karelina KE, Lambert KG, Kinsley CH (2009) Reproductive experience and the response of female Sprague-Dawley rats to fear and stress. Comp Med 59:437–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson MC, Friesen HG (1981) Two forms of rat placental lactogen revealed by radioimmunoassay. Endocrinology 108:2388–2390

    Article  CAS  PubMed  Google Scholar 

  • Robertson MC, Gillespie B, Friesen HG (1982) Characterization of the two forms of rat placental lactogen (rPL): rPL-I and rPL-II. Endocrinology 111:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Robinson BG, Emanuel RL, Frim DM, Majzoub JA (1988) Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proc Natl Acad Sci USA 85:5244–5248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross HE, Young LJ (2009) Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 30:534–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci 31:18198–18210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Shinkawa O, Yoshinaga K (1989) Placental corticotropin-releasing hormone may be a stimulator of maternal pituitary adrenocorticotropic hormone secretion in humans. J Clin Invest 84:1997–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawchenko PE, Li H-Y, Ericsson A (2000) Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res 122:61–78

    Article  CAS  PubMed  Google Scholar 

  • Schulte HM, Weisner D, Allolio B (1990) The corticotrophin releasing hormone test in late pregnancy: lack of adrenocorticotrophin and cortisol response. Clin Endocrinol 33:99–106

    Article  CAS  Google Scholar 

  • Sherwood OD, Crnekovic VE, Gordon WL, Rutherford JE (1980) Radioimmunoassay of relaxin throughout pregnancy and during parturition in the rat. Endocrinology 107:691–698

    Article  CAS  PubMed  Google Scholar 

  • Slattery DA, Hillerer KM (2016) The maternal brain under stress: consequences for adaptive peripartum plasticity and its potential functional implications. Front Neuroendocrinol 41:114–128

    Article  PubMed  Google Scholar 

  • Slattery DA, Neumann ID (2008) No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J Physiol 586:377–385

    Article  CAS  PubMed  Google Scholar 

  • Smith MS, Neill JD (1976) Termination at midpregnancy of the two daily surges of plasma prolactin initiated by mating in the rat. Endocrinology 98:696–701

    Article  CAS  PubMed  Google Scholar 

  • Stirrat LI, Just G, Homer NZM, Andrew R, Norman JE, Reynolds RM (2017) Glucocorticoids are lower at delivery in maternal, but not cord blood of obese pregnancies. Sci Rep 7:10263

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor A, Glover V, Marks M, Kammerer M (2009) Diurnal pattern of cortisol output in postnatal depression. Psychoneuroendocrinology 34:1184–1188

    Article  CAS  PubMed  Google Scholar 

  • Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15:1381–1389

    Article  PubMed  Google Scholar 

  • Torner L, Toschi N, Pohlinger A, Landgraf R, Neumann ID (2001) Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci 21:3207–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toufexis DJ, Rochford J, Walker CD (1999a) Lactation-induced reduction in rats’ acoustic startle is associated with changes in noradrenergic neurotransmission. Behav Neurosci 113:176–184

    Article  CAS  PubMed  Google Scholar 

  • Toufexis DJ, Tesolin S, Huang N, Walker C (1999b) Altered pituitary sensitivity to corticotropin-releasing factor and arginine vasopressin participates in the stress hyporesponsiveness of lactation in the rat. J Neuroendocrinol 11:757–764

    Article  CAS  PubMed  Google Scholar 

  • Toufexis DJ, Thrivikraman KV, Plotsky PM, Morilak DA, Huang N, Walker CD (1998) Reduced noradrenergic tone to the hypothalamic paraventricular nucleus contributes to the stress hyporesponsiveness of lactation. J Neuroendocrinol 10:417–427

    Article  CAS  PubMed  Google Scholar 

  • Toufexis DJ, Walker CD (1996) Noradrenergic facilitation of the adrenocorticotropin response to stress is absent during lactation in the rat. Brain Res 737:71–77

    Article  CAS  PubMed  Google Scholar 

  • Tu MT, Lupien SJ, Walker CD (2005) Measuring stress responses in postpartum mothers: perspectives from studies in human and animal populations. Stress 8:19–34

    Article  CAS  PubMed  Google Scholar 

  • Tu MT, Lupien SJ, Walker CD (2006) Multiparity reveals the blunting effect of breastfeeding on physiological reactivity to psychological stress. J Neuroendocrinol 18:494–503

    Article  CAS  PubMed  Google Scholar 

  • Vannuccini S, Bocchi C, Severi FM, Challis JR, Petraglia F (2016) Endocrinology of human parturition. Ann Endocrinol (Paris) 77:105–113

    Article  PubMed  Google Scholar 

  • Vogl SE, Worda C, Egarter C, Bieglmayer C, Szekeres T, Huber J, Husslein P (2006) Mode of delivery is associated with maternal and fetal endocrine stress response. BJOG 113:441–445

    Article  CAS  PubMed  Google Scholar 

  • Waddell BJ, Atkinson HC (1994) Production rate, metabolic clearance rate and uterine extraction of corticosterone during rat pregnancy. J Endocrinol 143:183–190

    Article  CAS  PubMed  Google Scholar 

  • Walker CD, Deschamps S, Proulx K, Tu M, Salzman C, Woodside B, Lupien S, Gallo-Payet N, Richard D (2004) Mother to infant or infant to mother? Reciprocal regulation of responsiveness to stress in rodents and the implications for humans. J Psychiatry Neurosci 29:364–382

    PubMed  PubMed Central  Google Scholar 

  • Walker CD, Lightman SL, Steele MK, Dallman MF (1992) Suckling is a persistent stimulus to the adrenocortical system of the rat. Endocrinology 130:115–125

    Article  CAS  PubMed  Google Scholar 

  • Walker CD, Tilders FJ, Burlet A (2001a) Increased colocalization of corticotropin-releasing factor and arginine vasopressin in paraventricular neurones of the hypothalamus in lactating rats: evidence from immunotargeted lesions and immunohistochemistry. J Neuroendocrinol 13:74–85

    CAS  PubMed  Google Scholar 

  • Walker CD, Toufexis DJ, Burlet A (2001b) Hypothalamic and limbic expression of CRF and vasopressin during lactation: implications for the control of ACTH secretion and stress hyporesponsiveness. Prog Brain Res 133:99–110

    Article  CAS  PubMed  Google Scholar 

  • Walker CD, Trottier G, Rochford J, Lavallée D (1995) Dissociation between behavioral and hormonal responses to the forced swim stress in lactating rats. J Neuroendocrinol 7:615–622

    Article  CAS  PubMed  Google Scholar 

  • Wartella J, Amory E, Lomas LM, Macbeth A, McNamara I, Stevens L, Lambert KG, Kinsley CH (2003) Single or multiple reproductive experiences attenuate neurobehavioral stress and fear responses in the female rat. Physiol Behav 79:373–381

    Article  CAS  PubMed  Google Scholar 

  • Wigger A, Lörscher P, Oehler I, Keck ME, Naruo T, Neumann ID (1999) Nonresponsiveness of the rat hypothalamo-pituitary-adrenocortical axis to parturition-related events: inhibitory action of endogenous opioids. Endocrinology 140:2843–2849

    Article  CAS  PubMed  Google Scholar 

  • Windle RJ, Brady MM, Kunanandam T, Da Costa AP, Wilson BC, Harbuz M, Lightman SL, Ingram CD (1997a) Reduced response of the hypothalamo-pituitary-adrenal axis to alpha1-agonist stimulation during lactation. Endocrinology 138:3741–3748

    Article  CAS  PubMed  Google Scholar 

  • Windle RJ, Wood S, Shanks N, Perks P, Conde GL, da Costa APC, Ingram CD, Lightman SL (1997b) Endocrine and behavioural responses to noise stress: comparison of virgin and lactating female rats during non-disrupted maternal activity. J Neuroendocrinol 9:407–414

    Article  CAS  PubMed  Google Scholar 

  • Windle RJ, Wood SA, Kershaw YM, Lightman SL, Ingram CD (2010) Reduced stress responsiveness in pregnancy: relationship with pattern of forebrain c-fos mRNA expression. Brain Res 1358:102–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windle RJ, Wood SA, Kershaw YM, Lightman SL, Ingram CD (2013) Adaptive changes in basal and stress-induced HPA activity in lactating and post-lactating female rats. Endocrinology 154:749–761

    Article  PubMed  PubMed Central  Google Scholar 

  • Workman JL, Gobinath AR, Kitay NF, Chow C, Brummelte S, Galea LAM (2016) Parity modifies the effects of fluoxetine and corticosterone on behavior, stress reactivity, and hippocampal neurogenesis. Neuropharmacology 105:443–453

    Article  CAS  PubMed  Google Scholar 

  • Young LJ, Muns S, Wang Z, Insel TR (1997) Changes in oxytocin receptor mRNA in rat brain during pregnancy and the effects of estrogen and interleukin-6. J Neuroendocrinol 9:859–865

    Article  CAS  PubMed  Google Scholar 

  • Yuen BS, Owens PC, Symonds ME, Keisler DH, McFarlane JR, Kauter KG, McMillen IC (2004) Effects of leptin on fetal plasma adrenocorticotropic hormone and cortisol concentrations and the timing of parturition in the sheep. Biol Reprod 70:1650–1657

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula J. Brunton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brunton, P.J., Walker, CD. (2024). Regulation of the Hypothalamo-Pituitary-Adrenal Axis in Pregnancy and Lactation. In: Brunton, P.J., Grattan, D.R. (eds) Neuroendocrine Regulation of Mammalian Pregnancy and Lactation. Masterclass in Neuroendocrinology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-51138-7_4

Download citation

Publish with us

Policies and ethics