Skip to main content

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 15))

  • 148 Accesses

Abstract

Pregnancy is a unique situation, in which two (or more) individuals are in intimate contact, with development of the foetus supported by a specialised structure called the placenta. The placenta transports nutrients and waste, and provides a physical barrier between the maternal and foetal circulation. Importantly for this chapter, the placenta functions as an endocrine organ, synthesising hormones that flood the maternal circulation, inducing and maintaining the critical adaptations required for a successful pregnancy. While mammals have adopted different strategies to synthesise hormones in sufficiently high concentrations, and there are considerable variations in the nature of placental hormone gene families, the adaptations driven by placental hormones are conserved at a fundamental level. These adaptations include changes in behaviour of the mother to ensure that offspring receive appropriate care and nutrition. Experimental studies in rodents have identified placental hormones that contribute to the priming of this maternal behaviour. Studies in humans suggest that aberrant expression of placental hormones may contribute to the higher incidence of mood disorders associated with pregnancy. Hormones synthesised by, or dependent on, the placenta may also act directly on the foetal brain influencing neurodevelopment. Through this bi-directional signalling of hormones, the placenta has potential to influence both maternal and offspring behaviour. For these reasons, studies on placental endocrine lineage development are fundamentally important for our understanding of brain health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad C, Karahoda R, Kastner P, Portillo R, Horackova H, Kucera R, Nachtigal P, Staud F (2020) Profiling of tryptophan metabolic pathways in the rat fetoplacental unit during gestation. Int J Mol Sci 21(20):7578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abou-Saleh MT, Ghubash R, Karim L, Krymski M, Bhai I (1998) Hormonal aspects of postpartum depression. Psychoneuroendocrinology 23:465–475

    Article  CAS  PubMed  Google Scholar 

  • Aghaeepour N, Lehallier B, Baca Q, Ganio EA, Wong RJ, Ghaemi MS, Culos A, El-Sayed YY, Blumenfeld YJ, Druzin ML, Winn VD, Gibbs RS, Tibshirani R, Shaw GM, Stevenson DK, Gaudilliere B, Angst MS (2018) A proteomic clock of human pregnancy. Am J Obstet Gynecol 218:347 e1–347 e14

    Article  PubMed  Google Scholar 

  • Ain R, Dai G, Dunmore JH, Godwin AR, Soares MJ (2004) A prolactin family paralog regulates reproductive adaptations to a physiological stressor. Proc Natl Acad Sci U S A 101:16543–16548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam SM, Ain R, Konno T, Ho-Chen JK, Soares MJ (2006) The rat prolactin gene family locus: species-specific gene family expansion. Mamm Genome 17:858–877

    Article  CAS  PubMed  Google Scholar 

  • Asher I, Kaplan B, Modai I, Neri A, Valevski A, Weizman A (1995) Mood and hormonal changes during late pregnancy and puerperium. Clin Exp Obstet Gynecol 22:321–325

    CAS  PubMed  Google Scholar 

  • Augustine RA, Kokay IC, Andrews ZB, Ladyman SR, Grattan DR (2003) Quantitation of prolactin receptor mRNA in the maternal rat brain during pregnancy and lactation. J Mol Endocrinol 31:221–232

    Article  CAS  PubMed  Google Scholar 

  • Baker J, Liu J-P, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and post natal growth. Cell 75:73–82

    Article  CAS  PubMed  Google Scholar 

  • Bao L, Tessier C, Prigent-Tessier A, Li F, Buzzio OL, Callegari EA, Horseman ND, Gibori G (2007) Decidual prolactin silences the expression of genes detrimental to pregnancy. Endocrinology 148:2326–2334

    Article  CAS  PubMed  Google Scholar 

  • Barkley MS, Bradford GE, Geschwind II (1978) The pattern of plasma prolactin concentration during the first half of mouse gestation. Biol Reprod 19:291–296

    Article  CAS  PubMed  Google Scholar 

  • Bonnin A, Levitt P (2011) Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bonnin A, Goeden N, Chen K, Wilson ML, King J, Shih JC, Blakely RD, Deneris ES, Levitt P (2011) A transient placental source of serotonin for the fetal forebrain. Nature 472:347–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouillot S, Rampon C, Tillet E, Huber P (2006) Tracing the glycogen cells with protocadherin 12 during mouse placenta development. Placenta. 27(8):882–888. https://doi.org/10.1016/j.placenta.2005.09.009. Epub 2005 Nov 2. PMID: 16269175

  • Bredy TW, Grant RJ, Champagne DL, Meaney MJ (2003) Maternal care influences neuronal survival in the hippocampus of the rat. Eur J Neurosci 18:2903–2909

    Article  PubMed  Google Scholar 

  • Bridges RS (1984) A quantitative analysis of the roles of dosage, sequence, and duration of estradiol and progesterone exposure in the regulation of maternal behavior in the rat. Endocrinology 114:930–940

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS (1990) Endocrine regulation of parental behavior in rodents. Oxford University Press, New York

    Google Scholar 

  • Bridges RS (2015) Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 36:178–196

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Freemark MS (1995) Human placental lactogen infusions into the medial preoptic area stimulate maternal behavior in steroid-primed, nulliparous female rats. Horm Behav 29:216–226

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Hays LE (2005) Steroid-induced alterations in mRNA expression of the long form of the prolactin receptor in the medial preoptic area of female rats: Effects of exposure to a pregnancy-like regimen of progesterone and estradiol. Brain Res Mol Brain Res 140:10–16

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Ronsheim PM (1990) Prolactin (PRL) regulation of maternal behavior in rats: bromocriptine treatment delays and PRL promotes the rapid onset of behavior. Endocrinology 126:837–848

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Scanlan VF (2005) Maternal memory in adult, nulliparous rats: effects of testing interval on the retention of maternal behavior. Dev Psychobiol 46:13–18

    Article  PubMed  Google Scholar 

  • Bridges RS, Rosenblatt JS, Feder HH (1978) Serum progesterone concentrations and maternal behavior in rats after pregnancy termination: behavioral stimulation after progesterone withdrawal and inhibition by progesterone maintenance. Endocrinology 102:258–267

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, DiBiase R, Loundes DD, Doherty PC (1985) Prolactin stimulation of maternal behavior in female rats. Science 227:782–784

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci U S A 87:8003–8007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges RS, Robertson MC, Shiu RP, Friesen HG, Stuer AM, Mann PE (1996) Endocrine communication between conceptus and mother: placental lactogen stimulation of maternal behavior. Neuroendocrinology 64:57–64

    Article  CAS  PubMed  Google Scholar 

  • Bridges RS, Robertson MC, Shiu RP, Sturgis JD, Henriquez BM, Mann PE (1997) Central lactogenic regulation of maternal behavior in rats: steroid dependence, hormone specificity, and behavioral potencies of rat prolactin and rat placental lactogen I. Endocrinology 138:756–763

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Herbison AE, Grattan DR (2011) Differential changes in responses of hypothalamic and brainstem neuronal populations to prolactin during lactation in the mouse. Biol Reprod 84:826–836

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Wyatt AK, Herbison RE, Knowles PJ, Ladyman SR, Binart N, Banks WA, Grattan DR (2016) Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J 30:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Brown RSE, Aoki M, Ladyman SR, Phillipps HR, Wyatt A, Boehm U, Grattan DR (2017) Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc Natl Acad Sci U S A 114:10779–10784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu P, Alam SM, Dhakal P, Vivian JL, Soares M (2016) A prolactin family paralog regulates placental adaptations to a physiological stressor in the mouse. Biol Reprod 94(5):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton GJ, Fowden AL (2015) The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci 370:20140066

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton GJ, Jauniaux E (2015) What is the placenta? Am J Obstet Gynecol 213:S6 e1, S6–8

    Article  PubMed  Google Scholar 

  • Cameron NM, Fish EW, Meaney MJ (2008) Maternal influences on the sexual behavior and reproductive success of the female rat. Horm Behav 54:178–184

    Article  PubMed  Google Scholar 

  • Carter AM (2012) Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev 92:1543–1576

    Article  CAS  PubMed  Google Scholar 

  • Carter AM (2018) Comparative placentation. In: Skinner MK (ed) Encyclopedia of reproduction. Academic, Cambridge, pp 129–136

    Chapter  Google Scholar 

  • Carter AM (2020) Animal models of human pregnancy and placentation: alternatives to the mouse. Reproduction 160:R129–R143

    Article  CAS  PubMed  Google Scholar 

  • Carter AM, Enders AC (2004) Comparative aspects of trophoblast development and placentation. Reprod Biol Endocrinol 2:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Cattini PA, Jin Y, Jarmasz JS, Noorjahan N, Bock ME (2020) Obesity and regulation of human placental lactogen production in pregnancy. J Neuroendocrinol 32(11):e12859

    Article  CAS  PubMed  Google Scholar 

  • Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 79:359–371

    Article  CAS  PubMed  Google Scholar 

  • Champagne FA, Curley JP, Keverne EB, Bateson PP (2007) Natural variations in postpartum maternal care in inbred and outbred mice. Physiol Behav 91:325–334

    Article  CAS  PubMed  Google Scholar 

  • Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469:491–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cindrova-Davies T, Jauniaux E, Elliot MG, Gong S, Burton GJ, Charnock-Jones DS (2017) RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken. Proc Natl Acad Sci U S A 114:E4753–E4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleaton MA, Dent CL, Howard M, Corish JA, Gutteridge I, Sovio U, Gaccioli F, Takahashi N, Bauer SR, Charnock-Jones DS, Powell TL, Smith GC, Ferguson-Smith AC, Charalambous M (2016) Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat Genet 48(12):1473–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coan PM, Conroy N, Burton GJ, Ferguson-Smith AC (2006) Origin and characteristics of glycogen cells in the developing murine placenta. Dev Dyn 235:3280–3294

    Article  CAS  PubMed  Google Scholar 

  • Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948

    Article  CAS  PubMed  Google Scholar 

  • Costa MA (2016) The endocrine function of human placenta: an overview. Reprod Biomed Online 32:14–43

    Article  CAS  PubMed  Google Scholar 

  • Creeth HDJ, John RM (2020) The placental programming hypothesis: Placental endocrine insufficiency and the co-occurrence of low birth weight and maternal mood disorders. Placenta 98:52–59

    Article  CAS  PubMed  Google Scholar 

  • Creeth HDJ, McNamara GI, Tunster SJ, Boque-Sastre R, Allen B, Sumption L, Eddy JB, Isles AR, John RM (2018) Maternal care boosted by paternal imprinting in mammals. PLoS Biol 16:e2006599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creeth HDJ, McNamara GI, Isles AR, John RM (2019) Imprinted genes influencing the quality of maternal care. Front Neuroendocrinol 53:100732

    Article  CAS  PubMed  Google Scholar 

  • Cross JC (2006) Placental function in development and disease. Reprod Fertil Dev 18:71–76

    Article  CAS  PubMed  Google Scholar 

  • Curley JP, Champagne FA (2016) Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods. Front Neuroendocrinol 40:52–66

    Article  PubMed  Google Scholar 

  • da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC (2008) Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 24:306–316

    Article  PubMed  Google Scholar 

  • DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80

    Article  CAS  PubMed  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    Article  CAS  PubMed  Google Scholar 

  • Dobolyi A, Grattan DR, Stolzenberg DS (2014) Preoptic inputs and mechanisms that regulate maternal responsiveness. J Neuroendocrinol 26:627–640

    Article  CAS  PubMed  Google Scholar 

  • Dubovicky M, Belovicova K, Csatlosova K, Bogi E (2017) Risks of using SSRI / SNRI antidepressants during pregnancy and lactation. Interdiscip Toxicol 10:30–34

    Article  PubMed  Google Scholar 

  • Dulac C, O’Connell LA, Wu Z (2014) Neural control of maternal and paternal behaviors. Science 345:765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquiliano DR, Guo W, Liang L, Dikkes P, Lopez MF (2009) Placental glycogen stores are increased in mice with H19 null mutations but not in those with insulin or IGF type 1 receptor mutations. Placenta 30:693–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrbach SE, Morrell JI, Pfaff DW (1986) Identification of medial preoptic neurons that concentrate estradiol and project to the midbrain in the rat. J Comp Neurol 247:364–382

    Article  CAS  PubMed  Google Scholar 

  • Ferron SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, Morante-Redolat JM, Laborda J, Guillemot F, Bauer SR, Farinas I, Ferguson-Smith AC (2011) Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475:381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferron SR, Radford EJ, Domingo-Muelas A, Kleine I, Ramme A, Gray D, Sandovici I, Constancia M, Ward A, Menheniott TR, Ferguson-Smith AC (2015) Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis. Nat Commun 6:8265

    Article  CAS  PubMed  Google Scholar 

  • Frank D, Fortino W, Clark L, Musalo R, Wang W, Saxena A, Li CM, Reik W, Ludwig T, Tycko B (2002) Placental overgrowth in mice lacking the imprinted gene Ipl. Proc Natl Acad Sci U S A 99:7490–7495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks B, Curley JP, Champagne FA (2011) Measuring variations in maternal behavior: relevance for studies of mood and anxiety. In: Gould TD (ed) Mood and anxiety related phenotypes in mice. Humana, Totowa

    Google Scholar 

  • Freeman ME, Neill JD (1972) The pattern of prolactin secretion during pseudopregnancy in the rat: a daily nocturnal surge. Endocrinology 90:1292–1294

    Article  CAS  PubMed  Google Scholar 

  • Freyer C, Renfree MB (2008) The mammalian yolk sac placenta. J Exp Zool Part B 312(6):545–554

    Article  Google Scholar 

  • Furuta M, Bridges RS (2005) Gestation-induced cell proliferation in the rat brain. Brain Res Dev Brain Res 156:61–66

    Article  CAS  PubMed  Google Scholar 

  • Gallagher JM, Nephew BC, Poirier G, King JA, Bridges RS (2019) Estrogen receptor-alpha knockouts and maternal memory in nulliparous rats. Horm Behav 110:40–45

    Article  CAS  PubMed  Google Scholar 

  • Galosy SS, Talamantes F (1995) Luteotropic actions of placental lactogens at midpregnancy in the mouse. Endocrinology 136:3993–4003

    Article  CAS  PubMed  Google Scholar 

  • Gasperowicz M, Surmann-Schmitt C, Hamada Y, Otto F, Cross JC (2013) The transcriptional co-repressor TLE3 regulates development of trophoblast giant cells lining maternal blood spaces in the mouse placenta. Dev Biol 382:1–14

    Article  CAS  PubMed  Google Scholar 

  • Georgiades P, Ferguson-Smith AC, Burton GJ (2002) Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23:3–19

    Article  CAS  PubMed  Google Scholar 

  • Gil-ad I, Zambotti F, Carruba MO, Vicentini L, Muller EE (1976) Stimulatory role for brain serotoninergic system on prolactin secretion in the male rat. Proc Soc Exp Biol Med 151:512–518

    Article  CAS  PubMed  Google Scholar 

  • Glover V (2014) Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best practice & research. Clin Obstet Gynaecol 28:25–35

    Google Scholar 

  • Glover V (2015) Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Adv Neurobiol 10:269–283

    Article  PubMed  Google Scholar 

  • Goodnick PJ, Chaudry T, Artadi J, Arcey S (2000) Women’s issues in mood disorders. Expert Opin Pharmacother 1:903–916

    Article  CAS  PubMed  Google Scholar 

  • Grattan DR (2002) Behavioural significance of prolactin signalling in the central nervous system during pregnancy and lactation. Reproduction 123:497–506

    Article  CAS  PubMed  Google Scholar 

  • Grattan D (2012) A mother’s brain knows. J Neuroendocrinol 23:1188–1189

    Article  Google Scholar 

  • Groer MW, Morgan K (2007) Immune, health and endocrine characteristics of depressed postpartum mothers. Psychoneuroendocrinology 32:133–139

    Article  CAS  PubMed  Google Scholar 

  • Guernsey MW, Chuong EB, Cornelis G, Renfree MB, Baker JC (2017) Molecular conservation of marsupial and eutherian placentation and lactation. Elife 6:e27450

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillemot F, Caspary T, Tilghman SM, Copeland NG, Gilbert DJ, Jenkins NA, Anderson DJ, Joyner AL, Rossant J, Nagy A (1995) Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet 9:235–242

    Article  CAS  PubMed  Google Scholar 

  • Gunnet JW, Freeman ME (1983) The mating-induced release of prolactin: a unique neuroendocrine response. Endocr Rev 4:44–61

    Article  CAS  PubMed  Google Scholar 

  • Haig D (2008) Placental growth hormone-related proteins and prolactin-related proteins. Placenta 29 Suppl A:S36–S41

    Article  CAS  PubMed  Google Scholar 

  • Handwerger S, Freemark M (2000) The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab 13:343–356

    Article  CAS  PubMed  Google Scholar 

  • Hannibal RL, Baker JC (2016) Selective amplification of the genome surrounding key placental genes in trophoblast giant cells. Curr Biol 26:230–236

    Article  CAS  PubMed  Google Scholar 

  • Hemberger M, Hanna CW, Dean W (2020) Mechanisms of early placental development in mouse and humans. Nat Rev Genet 21:27–43

    Article  CAS  PubMed  Google Scholar 

  • Heron J, O’Connor TG, Evans J, Golding J, Glover V, ALSPAC Study Team (2004) The course of anxiety and depression through pregnancy and the postpartum in a community sample. J Affect Disord 80:65–73

    Article  PubMed  Google Scholar 

  • Horseman ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E, Dorshkind K (1997) Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 16:6926–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Cross JC (2011) Ablation of Tpbpa-positive trophoblast precursors leads to defects in maternal spiral artery remodeling in the mouse placenta. Dev Biol 358:231–239

    Article  CAS  PubMed  Google Scholar 

  • Janssen AB, Capron LE, O’Donnell K, Tunster SJ, Ramchandani PG, Heazell AE, Glover V, John RM (2016a) Maternal prenatal depression is associated with decreased placental expression of the imprinted gene PEG3. Psychol Med 46:2999–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen AB, Kertes DA, McNamara GI, Braithwaite EC, Creeth HD, Glover VI, John RM (2016b) A role for the placenta in programming maternal mood and childhood behavioural disorders. J Neuroendocrinol 28(8)

    Google Scholar 

  • Janssen AB, Savory KA, Garay SM, Sumption L, Watkins W, Garcia-Martin I, Savory NA, Ridgway A, Isles AR, Penketh R, Jones IR, John RM (2018) Persistence of anxiety symptoms after elective caesarean delivery. BJPsych Open 4:354–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Lu SY, Fresnoza A, Detillieux KA, Duckworth ML, Cattini PA (2009) Differential placental hormone gene expression during pregnancy in a transgenic mouse containing the human growth hormone/chorionic somatomammotropin locus. Placenta 30:226–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Vakili H, Liu SY, Menticoglou S, Bock ME, Cattini PA (2018) Chromosomal architecture and placental expression of the human growth hormone gene family are targeted by pre-pregnancy maternal obesity. Am J Physiol Endocrinol Metab 315:E435–E445

    Article  CAS  PubMed  Google Scholar 

  • John RM (2013) Epigenetic regulation of placental endocrine lineages and complications of pregnancy. Biochem Soc Trans 41:701–709

    Article  CAS  PubMed  Google Scholar 

  • John RM (2017) Imprinted genes and the regulation of placental endocrine function: Pregnancy and beyond. Placenta 56:86–90

    Article  CAS  PubMed  Google Scholar 

  • John R, Hemberger M (2012) A placenta for life. Reprod Biomed Online 25:5–11

    Article  CAS  PubMed  Google Scholar 

  • Jomain JB, Tallet E, Broutin I, Hoos S, van Agthoven J, Ducruix A, Kelly PA, Kragelund BB, England P, Goffin V (2007) Structural and thermodynamic bases for the design of pure prolactin receptor antagonists: X-ray structure of Del1-9-G129R-hPRL. J Biol Chem 282:33118–33131

    Article  CAS  PubMed  Google Scholar 

  • Kamberi IA, Mical RS, Porter JC (1971) Effects of melatonin and serotonin on the release of FSH and prolactin. Endocrinology 88:1288–1293

    Article  CAS  PubMed  Google Scholar 

  • Kaplan SL, Gurpide E, Sciarra JJ, Grumbach MM (1968) Metabolic clearance rate and production rate of chorionic growth hormone-prolactin in late pregnancy. J Clin Endocrinol Metab 28:1450–1460

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Hwang IK, Yoo KY, Yoo DY, Bae E, Lee CH, Choi JH, Choi JW, Seong JK, Yoon YS, Won MH (2010) Pregnancy inhibits cell proliferation and neuroblast differentiation without neuronal damage in the hippocampal dentate gyrus in C57BL/6N mice. Brain Res 1315:25–32

    Article  CAS  PubMed  Google Scholar 

  • Kimble DP, Rogers L, Hendrickson CW (1967) Hippocampal lesions disrupt maternal, not sexual, behavior in the albino rat. J Comp Physiol Psychol 63:401–407

    Article  CAS  PubMed  Google Scholar 

  • Knox K, Leuenberger D, Penn AA, Baker JC (2011) Global hormone profiling of murine placenta reveals Secretin expression. Placenta 32:811–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl J, Dulac C (2018) Neural control of parental behaviors. Curr Opin Neurobiol 49:116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B, Kapoor V, Miyamishi K, Zweifel LS, Luo L, Uchida N, Dulac C (2018) Functional circuit architecture underlying parental behaviour. Nature 556:326–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokay IC, Bull PM, Davis RL, Ludwig M, Grattan DR (2006) Expression of the long form of the prolactin receptor in magnocellular oxytocin neurons is associated with specific prolactin regulation of oxytocin neurons. Am J Physiol Regul Integr Comp Physiol 290:R1216–R1225

    Article  CAS  PubMed  Google Scholar 

  • Kratimenos P, Penn AA (2019) Placental programming of neuropsychiatric disease. Pediatr Res 86:157–164

    Article  PubMed  Google Scholar 

  • Ladyman SR, Hackwell ECR, Brown RSE (2020) The role of prolactin in co-ordinating fertility and metabolic adaptations during reproduction. Neuropharmacology 167:107911

    Article  CAS  PubMed  Google Scholar 

  • Larsen CM, Grattan DR (2010) Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology 151:3805–3814

    Article  CAS  PubMed  Google Scholar 

  • Larsen CM, Grattan DR (2012) Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun 26:201–209

    Article  CAS  PubMed  Google Scholar 

  • Latham N, Mason G (2004) From house mouse to mouse house: the behavioural biology of free-living Mus musculus and its implications in the laboratory. Appl Anim Behav Sci 86:261–289

    Article  Google Scholar 

  • Linnemann K, Malek A, Sager R, Blum WF, Schneider H, Fusch C (2000) Leptin production and release in the dually in vitro perfused human placenta. J Clin Endocrinol Metab 85:4298–4301

    CAS  PubMed  Google Scholar 

  • Liu Y, Fan X, Wang R, Lu X, Dang YL, Wang H, Lin HY, Zhu C, Ge H, Cross JC, Wang H (2018) Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res 28:819–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockwood Estrin G, Ryan EG, Trevillion K, Demilew J, Bick D, Pickles A, Howard LM (2019) Young pregnant women and risk for mental disorders: findings from an early pregnancy cohort. BJPsych Open 5:e21

    Article  PubMed  PubMed Central  Google Scholar 

  • Lonstein JS (2007) Regulation of anxiety during the postpartum period. Front Neuroendocrinol 28:115–141

    Article  PubMed  Google Scholar 

  • Lowman HB, Cunningham BC, Wells JA (1991) Mutational analysis and protein engineering of receptor-binding determinants in human placental lactogen. J Biol Chem 266:10982–10988

    Article  CAS  PubMed  Google Scholar 

  • Lucas BK, Ormandy CJ, Binart N, Bridges RS, Kelly PA (1998) Null mutation of the prolactin receptor gene produces a defect in maternal behavior. Endocrinology 139:4102–4107

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Jain A, Denslow ND, Nouri MZ, Chen S, Wang T, Zhu N, Koh J, Sarma SJ, Sumner BW, Lei Z, Sumner LW, Bivens NJ, Roberts RM, Tuteja G, Rosenfeld CS (2020) Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc Natl Acad Sci U S A 117:4642–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maston GA, Ruvolo M (2002) Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol Biol Evol 19:320–335

    Article  CAS  PubMed  Google Scholar 

  • McLellan AS, Zimmermann W, Moore T (2005) Conservation of pregnancy-specific glycoprotein (PSG) N domains following independent expansions of the gene families in rodents and primates. BMC Evol Biol 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  • McNamara GI, Creeth HDJ, Harrison DJ, Tansey KE, Andrews RM, Isles AR, John RM (2018) Loss of offspring Peg3 reduces neonatal ultrasonic vocalizations and increases maternal anxiety in wild-type mothers. Hum Mol Genet 27:440–450

    Article  CAS  PubMed  Google Scholar 

  • Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192

    Article  CAS  PubMed  Google Scholar 

  • Menzies BR, Pask AJ, Renfree MB (2011) Placental expression of pituitary hormones is an ancestral feature of therian mammals. Evodevo 2:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelsen TM, Henriksen T, Reinhold D, Powell TL, Jansson T (2019) The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling. FASEB J 33:2944–2956

    Article  CAS  PubMed  Google Scholar 

  • Mikaelsson MA, Constancia M, Dent CL, Wilkinson LS, Humby T (2013) Placental programming of anxiety in adulthood revealed by Igf2-null models. Nat Commun 4:2311

    Article  PubMed  Google Scholar 

  • Miller WL, Eberhardt NL (1983) Structure and evolution of the growth hormone gene family. Endocr Rev 4:97–130

    Article  CAS  PubMed  Google Scholar 

  • Moltz H, Robbins D (1965) Maternal behavior of primiparous and multiparous rats. J Comp Physiol Psychol 60:417–421

    Article  CAS  PubMed  Google Scholar 

  • Moltz H, Lubin M, Leon M, Numan M (1970) Hormonal induction of maternal behavior in the ovariectomized nulliparous rat. Physiol Behav 5:1373–1377

    Article  CAS  PubMed  Google Scholar 

  • Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, Sul HS (2002) Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol 22:5585–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore T, Dveksler GS (2014) Pregnancy-specific glycoproteins: complex gene families regulating maternal-fetal interactions. Int J Dev Biol 58:273–280

    Article  CAS  PubMed  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. TIG 7:45–49

    Article  CAS  PubMed  Google Scholar 

  • Moore T, Constancia M, Zubair M, Bailleul B, Feil R, Sasaki H, Reik W (1997) Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc Natl Acad Sci U S A 94:12509–12514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN (2018) The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol 9:1091

    Article  PubMed  PubMed Central  Google Scholar 

  • Nephew BC, Bridges RS (2008) Arginine vasopressin V1a receptor antagonist impairs maternal memory in rats. Physiol Behav 95:182–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newbern D, Freemark M (2011) Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diab Obes 18:409–416

    Article  CAS  Google Scholar 

  • Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W, Hemberger M (2008) Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10:1280–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogami H, Hoshino R, Ogasawara K, Miyamoto S, Hisano S (2007) Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland. J Neuroendocrinol 19:583–593

    Article  CAS  PubMed  Google Scholar 

  • Noirot E (1969) Serial order of maternal responses in mice. Anim Behav 17:547–550

    Article  CAS  PubMed  Google Scholar 

  • Numan M (1978) Progesterone inhibition of maternal behavior in the rat. Horm Behav 11:209–231

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Young LJ (2016) Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Horm Behav 77:98–112

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Rosenblatt JS, Komisaruk BR (1977) Medial preoptic area and onset of maternal behavior in the rat. J Comp Physiol Psychol 91:146–164

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Roach JK, del Cerro MC, Guillamon A, Segovia S, Sheehan TP, Numan MJ (1999) Expression of intracellular progesterone receptors in rat brain during different reproductive states, and involvement in maternal behavior. Brain Res 830:358–371

    Article  CAS  PubMed  Google Scholar 

  • Ocampo Daza D, Larhammar D (2018) Evolution of the receptors for growth hormone, prolactin, erythropoietin and thrombopoietin in relation to the vertebrate tetraploidizations. Gen Comp Endocrinol 257:143–160

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V (2012) Maternal prenatal anxiety and downregulation of placental 11beta-HSD2. Psychoneuroendocrinology 37:818–826

    Article  PubMed  Google Scholar 

  • Oh-McGinnis R, Bogutz AB, Lefebvre L (2011) Partial loss of Ascl2 function affects all three layers of the mature placenta and causes intrauterine growth restriction. Dev Biol 351:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, Sienerth A, White JK, Tuck E, Ryder EJ, Gleeson D, Siragher E, Wardle-Jones H, Staudt N, Wali N, Collins J, Geyer S, Busch-Nentwich EM, Galli A, Smith JC, Robertson E, Adams DJ, Weninger WJ, Mohun T, Hemberger M (2018) Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 555:463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petraglia F, Sawchenko PE, Rivier J, Vale W (1987) Evidence for local stimulation of ACTH secretion by corticotropin-releasing factor in human placenta. Nature 328:717–719

    Article  CAS  PubMed  Google Scholar 

  • Pi X, Zhang B, Li J, Voogt JL (2003) Promoter usage and estrogen regulation of prolactin receptor gene in the brain of the female rat. Neuroendocrinology 77:187–197

    Article  CAS  PubMed  Google Scholar 

  • Potter HG, Ashbrook DG, Hager R (2019) Offspring genetic effects on maternal care. Front Neuroendocrinol 52:195–205

    Article  PubMed  Google Scholar 

  • Prigent-Tessier A, Tessier C, Hirosawa-Takamori M, Boyer C, Ferguson-Gottschall S, Gibori G (1999) Rat decidual prolactin. Identification, molecular cloning, and characterization. J Biol Chem 274:37982–37989

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Cross JC (2014) Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 387:131–141

    Article  CAS  PubMed  Google Scholar 

  • Rawn SM, Huang C, Hughes M, Shaykhutdinov R, Vogel HJ, Cross JC (2015) Pregnancy hyperglycemia in prolactin receptor mutant, but not prolactin mutant, mice and feeding-responsive regulation of placental lactogen genes implies placental control of maternal glucose homeostasis. Biol Reprod 93:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro AC, Musatov S, Shteyler A, Simanduyev S, Arrieta-Cruz I, Ogawa S, Pfaff DW (2012) siRNA silencing of estrogen receptor-alpha expression specifically in medial preoptic area neurons abolishes maternal care in female mice. Proc Natl Acad Sci U S A 109:16324–16329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddle O, Lahr EL, Bates RW (1935) Maternal behavior induced in virgin rats by prolactin. Proc Soc Exp Biol Med 32:730–734

    Article  Google Scholar 

  • Rolls A, Schori H, London A, Schwartz M (2008) Decrease in hippocampal neurogenesis during pregnancy: a link to immunity. Mol Psychiatry 13:468–469

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt JS (1967) Nonhormonal basis of maternal behavior in the rat. Science 156:1512–1514

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt JS, Siegel HI (1975) Hysterectomy-induced maternal behavior during pregnancy in the rat. J Comp Physiol Psychol 89:685–700

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt JS, Wagner CK, Morrell JI (1994) Hormonal priming and triggering of maternal behavior in the rat with special reference to the relations between estrogen receptor binding and ER mRNA in specific brain regions. Psychoneuroendocrinology 19:543–552

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld CS (2021) The placenta-brain-axis. J Neurosci Res 99:271–283

    Article  CAS  PubMed  Google Scholar 

  • Ross C, Boroviak TE (2020) Origin and function of the yolk sac in primate embryogenesis. Nat Commun 11:3760

    Article  PubMed  PubMed Central  Google Scholar 

  • Salas M, John R, Saxena A, Barton S, Frank D, Fitzpatrick G, Higgins MJ, Tycko B (2004) Placental growth retardation due to loss of imprinting of Phlda2. Mech Dev 121:1199–1210

    Article  CAS  PubMed  Google Scholar 

  • Scanlan VF, Byrnes EM, Bridges RS (2006) Reproductive experience and activation of maternal memory. Behav Neurosci 120:676–686

    Article  PubMed  Google Scholar 

  • Schmeisser MJ, Baumann B, Johannsen S, Vindedal GF, Jensen V, Hvalby OC, Sprengel R, Seither J, Maqbool A, Magnutzki A, Lattke M, Oswald F, Boeckers TM, Wirth T (2012) IkappaB kinase/nuclear factor kappaB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling. J Neurosci 32:5688–5703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 113:6–39

    Article  CAS  PubMed  Google Scholar 

  • Seegal RF, Denenberg VH (1974) Maternal experience prevents pup-killing in mice induced by peripheral anosmia. Physiol Behav 13:339–341

    Article  CAS  PubMed  Google Scholar 

  • Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C, Cross JC, Weiss S (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299:117–120

    Article  CAS  PubMed  Google Scholar 

  • Siegel HI, Rosenblatt JS (1975a) Estrogen-induced maternal behavior in hysterectomized-overiectomized virgin rats. Physiol Behav 14:465–471

    Article  CAS  PubMed  Google Scholar 

  • Siegel HI, Rosenblatt JS (1975b) Latency and duration of estrogen induction of maternal behavior in hysterectomized-ovariectomized virgin rats: effects of pup stimulation. Physiol Behav 14:473–476

    Article  CAS  PubMed  Google Scholar 

  • Siegel HI, Rosenblatt JS (1975c) Progesterone inhibition of estrogen-induced maternal behavior in hysterectomized-ovariectomized virgin rats. Horm Behav 6:223–230

    Article  CAS  PubMed  Google Scholar 

  • Siegel HI, Rosenblatt JS (1978) Duration of estrogen stimulation and progesterone inhibition of maternal behavior in pregnancy-terminated rats. Horm Behav 11:12–19

    Article  CAS  PubMed  Google Scholar 

  • Siegel HI, Doerr HK, Rosenblatt JS (1978) Further studies on estrogen-induced maternal behavior in hysterectomized-ovariectomized virgin rats. Physiol Behav 21:99–103

    Article  CAS  PubMed  Google Scholar 

  • Simmons DG, Fortier AL, Cross JC (2007) Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol 304:567–578

    Article  CAS  PubMed  Google Scholar 

  • Simmons DG, Rawn S, Davies A, Hughes M, Cross JC (2008) Spatial and temporal expression of the 23 murine prolactin/placental lactogen-related genes is not associated with their position in the locus. BMC Genomics 9:352

    Article  PubMed  PubMed Central  Google Scholar 

  • Smas CM, Chen L, Sul HS (1997) Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol 17:977–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smiley KO, Ladyman SR, Gustafson P, Grattan DR, Brown RSE (2019) Neuroendocrinology and adaptive physiology of maternal care. Curr Top Behav Neurosci 43:161–210

    Article  CAS  PubMed  Google Scholar 

  • Soares MJ (2004) The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod Biol Endocrinol 2:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares MJ, Talamantes F (1982) Gestational effects on placental and serum androgen, progesterone and prolactin-like activity in the mouse. J Endocrinol 95:29–36

    Article  CAS  PubMed  Google Scholar 

  • Soares MJ, Konno T, Alam SM (2007) The prolactin family: effectors of pregnancy-dependent adaptations. Trends Endocrinol Metab 18:114–121

    Article  CAS  PubMed  Google Scholar 

  • Stack EC, Balakrishnan R, Numan MJ, Numan M (2002) A functional neuroanatomical investigation of the role of the medial preoptic area in neural circuits regulating maternal behavior. Behav Brain Res 131:17–36

    Article  PubMed  Google Scholar 

  • Stolzenberg DS, Champagne FA (2016) Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Horm Behav 77:204–210

    Article  CAS  PubMed  Google Scholar 

  • Stolzenberg DS, Rissman EF (2011) Oestrogen-independent, experience-induced maternal behaviour in female mice. J Neuroendocrinol 23:345–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumption LA, Garay SM, John RM (2020) Low serum placental lactogen at term is associated with postnatal symptoms of depression and anxiety in women delivering female infants. Psychoneuroendocrinology 116:104655

    Article  CAS  PubMed  Google Scholar 

  • Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93:309–312

    Article  CAS  PubMed  Google Scholar 

  • Swart JM, Grattan DR, Ladyman SR, Brown RSE (2021) Changes in maternal motivation across reproductive states in mice: A role for prolactin receptor activation on GABA neurons. Horm Behav 135:105041

    Article  CAS  PubMed  Google Scholar 

  • Szyf M, Weaver IC, Champagne FA, Diorio J, Meaney MJ (2005) Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 26:139–162

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Kobayashi T, Kanayama N (2000) p57(Kip2) regulates the proper development of labyrinthine and spongiotrophoblasts. Mol Hum Reprod 6:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Gertsenstein M, Rossant J, Nagy A (1997) Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol 190:55–65

    Article  CAS  PubMed  Google Scholar 

  • Terkel J, Rosenblatt JS (1972) Humoral factors underlying maternal behavior at parturition: cross transfusion between freely moving rats. J Comp Physiol Psychol 80:365–371

    Article  CAS  PubMed  Google Scholar 

  • Theiler K (1989) The house mouse: atlas of embryonic development. Springer, Berlin

    Book  Google Scholar 

  • Thomson M (2013) The physiological roles of placental corticotropin releasing hormone in pregnancy and childbirth. J Physiol Biochem 69:559–573

    Article  CAS  PubMed  Google Scholar 

  • Torner L, Toschi N, Nava G, Clapp C, Neumann ID (2002) Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci 15:1381–1389

    Article  PubMed  Google Scholar 

  • Torner L, Karg S, Blume A, Kandasamy M, Kuhn HG, Winkler J, Aigner L, Neumann ID (2009) Prolactin prevents chronic stress-induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci 29:1826–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Erice Imprinting G (2019) Genomic imprinting and physiological processes in mammals. Cell 176:952–965

    Article  CAS  PubMed  Google Scholar 

  • Tunster SJ, Tycko B, John RM (2010) The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol Cell Biol 30:295–306

    Article  CAS  PubMed  Google Scholar 

  • Tunster SJ, Van de Pette M, John RM (2011) Fetal overgrowth in the Cdkn1c mouse model of Beckwith-Wiedemann syndrome. Dis Model Mech 4:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunster SJ, Van De Pette M, John RM (2014) Isolating the role of elevated Phlda2 in asymmetric late fetal growth restriction in mice. Dis Model Mech 7:1185–1191

    PubMed  PubMed Central  Google Scholar 

  • Tunster SJ, Creeth HD, John RM (2016a) The imprinted Phlda2 gene modulates a major endocrine compartment of the placenta to regulate placental demands for maternal resources. Dev Biol 409:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunster SJ, McNamara GI, Creeth HD, John RM (2016b) Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse Placenta. Dev Biol 418:55–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunster SJ, Boqué-Sastre R, McNamara GI, Hunter SM, Creeth HDJ, John RM (2018) Peg3 Deficiency Results in Sexually Dimorphic Losses and Gains in the Normal Repertoire of Placental Hormones. Front Cell Dev Biol. 6:123. https://doi.org/10.3389/fcell.2018.00123. PMID: 30320110; PMCID: PMC6170603

  • Turco MY, Moffett A (2019) Development of the human placenta. Development 146(22)

    Google Scholar 

  • Vacher CM, Lacaille H, O’Reilly JJ, Salzbank J, Bakalar D, Sebaoui S, Liere P, Clarkson-Paredes C, Sasaki T, Sathyanesan A, Kratimenos P, Ellegood J, Lerch JP, Imamura Y, Popratiloff A, Hashimoto-Torii K, Gallo V, Schumacher M, Penn AA (2021) Placental endocrine function shapes cerebellar development and social behavior. Nat Neurosci 24:1392–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergara-Castaneda E, Grattan DR, Pasantes-Morales H, Perez-Dominguez M, Cabrera-Reyes EA, Morales T, Cerbon M (2016) Prolactin mediates neuroprotection against excitotoxicity in primary cell cultures of hippocampal neurons via its receptor. Brain Res 1636:193–199

    Article  CAS  PubMed  Google Scholar 

  • Walker WH, Fitzpatrick SL, Barrera-Saldana HA, Resendez-Perez D, Saunders GF (1991) The human placental lactogen genes: structure, function, evolution and transcriptional regulation. Endocr Rev 12:316–328

    Article  CAS  PubMed  Google Scholar 

  • Walker TL, Vukovic J, Koudijs MM, Blackmore DG, Mackay EW, Sykes AM, Overall RW, Hamlin AS, Bartlett PF (2012) Prolactin stimulates precursor cells in the adult mouse hippocampus. PLoS One 7:e44371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  CAS  PubMed  Google Scholar 

  • Weber EM, Olsson AS (2008) Maternal behaviour in Mus musculus sp.: An ethological review. Appl Anim Behav Sci 114:1–22

    Article  Google Scholar 

  • Woods L, Perez-Garcia V, Hemberger M (2018) Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front Endocrinol (Lausanne) 9:570

    Article  PubMed  Google Scholar 

  • Wu HH, Choi S, Levitt P (2016) Differential patterning of genes involved in serotonin metabolism and transport in extra-embryonic tissues of the mouse. Placenta 42:74–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynne F, Ball M, McLellan AS, Dockery P, Zimmermann W, Moore T (2006) Mouse pregnancy-specific glycoproteins: tissue-specific expression and evidence of association with maternal vasculature. Reproduction 131:721–732

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Hao J, Li G (2019) Deletion of Prl7d1 causes placental defects at mid-pregnancy in mice. Mol Reprod Dev 86:696–713

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

With thanks to members of Preg_lab past and present, and Hannah Tyson for her comments on the chapter. Research relevant to this chapter was funded by Medical Research Council (MR/M013960/1) and Biotechnology and Biological Sciences Research Council (BB/J015156; BB/P002307/1; BB/P008623/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind M. John .

Editor information

Editors and Affiliations

Key References: See Main List for Reference Details

Key References: See Main List for Reference Details

  • Bridges and Freemark (1995). First report that (human) placental lactogen induces maternal behaviour in non-pregnant rats.

  • Simmons et al. (2008). Characterisation of the spatial and temporal expression of prolactin family members in the mouse placenta. This work identified the spongiotrophoblast as a major endocrine lineage.

  • Tunster et al. (2016a). First demonstration that the maternally expressed imprinted gene Phlda2 is a key negative regulator of the mouse spongiotrophoblast lineage, which is the major endocrine lineage of the mouse placenta. Loss-of-function of Phlda2 increased the size of this lineage and the global expression of key placental hormones, including mouse placental lactogen.

  • Creeth et al. (2018). First demonstration that maternal behaviour is modulated by the dosage of Phlda2 in the mouse foetus. Genetically wild type dams exposed to higher levels of Phlda2 in their offspring (lower placental hormones) were more focused on nest building while those exposed to lower levels of Phlda2 in their offspring (higher placental hormones) were more focused on nurturing and grooming their pups.

  • Bonnin et al. (2011). First experimental demonstration that the mouse placenta is a source of serotonin for the foetal brain, with the potential to influence foetal brain development and later-life behaviour.

  • Sumption et al. (2020). Reported low placental lactogen associated with symptoms of postnatal depression and anxiety.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

John, R.M. (2024). The Placenta as a Neuroendocrine Organ. In: Brunton, P.J., Grattan, D.R. (eds) Neuroendocrine Regulation of Mammalian Pregnancy and Lactation. Masterclass in Neuroendocrinology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-51138-7_2

Download citation

Publish with us

Policies and ethics