Skip to main content

Application of Nanotechnology in Food Microbiology: Implication on Public Health

  • Chapter
  • First Online:
Applications of Nanotechnology in Microbiology

Abstract

Recent advancement in nanotechnology recommended lots of essential and beneficial contributions in scientific as well as in industrial areas, including food science and technology. The major concern for maintenance of the quality of food depends on its processing, packaging, detection of any pathogens being present, and to increase the shelf life of the food products. Nanotechnologies through the use of various organic-, inorganic-, and bio-nanomaterials can contribute to detect and inhibit the growth of any food-spoilage microorganisms on food surfaces. Recently, nanoparticle-based biosensors have been developed to detect the foodborne pathogens or any hazardous substances, if remain in food. The survival of probiotics in any extreme conditions, like altered temperature, pH, and salinity, can be improved by encapsulation in nanoparticles. This review discusses the potential of different aspects of nanotechnology used in food industry with special reference to food microbiology to provide consumers a contamination-free safe food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dingman, J. (2008). Nanotechnology: Its impact on food safety. (Guest commentary). Journal of Environmental Health, 70(6), 47–50.

    PubMed  Google Scholar 

  2. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: Formation, properties and applications. Soft Matter, 12, 2826–2841. https://doi.org/10.1039/c5sm02958a

    Article  CAS  PubMed  Google Scholar 

  4. Chakraborty, A., Guha, S., & Patra, P. (2020). Nanotechnology and global applications: Bench to community. Journal of Biology and Life Science. (ISSN 2157-6076), 11(2), 181–189.

    Article  Google Scholar 

  5. Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agrofood: From field to plate. Food Research International, 69, 381–400. https://doi.org/10.1016/j.foodres.2015.01.005

    Article  Google Scholar 

  6. Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6, 628–647. https://doi.org/10.1007/s11947-012-0944-0

    Article  CAS  Google Scholar 

  7. Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2014). Biosynthesis of silver nanoparticles using Plectranthusamboinicus leaf extract and its antimicrobial activity. Spectro chimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 257–262.

    Article  CAS  Google Scholar 

  8. Egger, S., Lehmann, R. P., Height, M. J., Loessner, M. J., & Schuppler, M. (2009). Antimicrobial properties of a novel silver-silica nanocomposite material. Applied and Environmental Microbiology, 75, 2973–2976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, S., Yuan, L., Yue, X., Zheng, Z., & Tang, Z. (2008). Recent advances in nanosensors for organophosphate pesticide detection. Advanced Powder Technology, 19, 419–441. https://doi.org/10.1016/S0921-8831(08)60910-3

    Article  CAS  Google Scholar 

  10. Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2014). Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiology., 6, 933–940.

    Article  Google Scholar 

  11. Murthy, K. C., Monika, P., Jayaprakasha, G., & Patil, B. S. (2018). Nanoencapsulation: An advanced nanotechnological approach to enhance the biological efficacy of curcumin advances in plant phenolics: From chemistry to human health (pp. 383–405). ACS Publications.

    Book  Google Scholar 

  12. Nasr, N. F. (2015). Applications of nanotechnology in food microbiology. International Journal of Current Microbiology and Applied Sciences, 4, 846–853.

    CAS  Google Scholar 

  13. Bugusu, B., Mejia, C., Magnuson, B., & Tafazoli, S. (2009). Global regulatory food policies on nanotechnology. Food Technology, 63(5), 24–29.

    Google Scholar 

  14. Semo, E., Kesselman, E., Danino, D., & Livney, Y. D. (2007). Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocolloids, 21, 936–942.

    Article  CAS  Google Scholar 

  15. Sekhon, B. S. (2010). Food nanotechnology – an overview. Nanotechnology, Science and Applications, 3(4), 1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu, W. C., Opazo, M. A., Acuña, S. M., & Toledo, P. G. (2017). New route for self-assembly of α-lactalbumin nanotubes and their use as templates to grow silver nanotubes. PLoS One, 12(4), e0175680. https://doi.org/10.1371/journal.pone.0175680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aguilera, J. M., & Stanley, D. W. (1999). Microstructural principles of food processing and engineering (2nd ed.). Springer-Verlag. Available from; http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1164. Accessed 26 Feb 2010

    Google Scholar 

  18. Donsì, F., Annunziata, M., Sessa, M., & Ferrari, G. (2010). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Journal of Biotechnology, 44, 1908–1914.

    Google Scholar 

  19. Ravichandran, M., Hettiarachchy, N. S., Ganesh, V., Ricke, S. C., & Singh, S. (2011). Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157: H7 and Salmonella typhimurium in broth and chicken meat system. Journal of Food Safety, 31(462), 471.

    Google Scholar 

  20. Chopra, M., Kaur, P., Bernela, M., & Thakur, R. (2014). Surfactant-assisted nisin loaded chitosan-carrageenan nanocapsule synthesis for controlling food pathogens. Food Control, 37, 158–164.

    Article  CAS  Google Scholar 

  21. Handford, C. E., Dean, M., Henchion, M., Spence, M., Elliott, C. T., & Campbell, K. (2014). Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends in Food Science and Technology, 40, 226–241.

    Article  CAS  Google Scholar 

  22. Rahmati, F. (2020). Microencapsulation of Lactobacillus acidophilus and Lactobacillus plantarum in Eudragit S100 and alginate chitosan under gastrointestinal and normal conditions. Applied Nanoscience, 10, 391–399.

    Article  CAS  Google Scholar 

  23. Rahmati, F. (2017). Characterization of Lactobacillus, Bacillus and Saccharomyces isolated from Iranian traditional dairy products for potential sources of starter cultures. AIMS Microbiology, 3, 815–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rahmati, F. (2018b). Iran, the potential source of dairy starter microorganisms: Isolation, identification and characterization of LAB and yeast starter strain from traditional dairy products of Lorestan province. GRIN Verlag.

    Google Scholar 

  25. Dulf, F. V., Pamfil, D., Baciu, A. D., & Pintea, A. (2013). Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes. Chemistry Central Journal, 7, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vidhyalakshmi, R., Bhakyaraj, R., & Subhasree, R. S. (2009). Encapsulation “the future of probiotics” – A review. Advances in Biology Research, 3–4, 6–103.

    Google Scholar 

  27. Wang, X., Jiang, Y., Wang, Y. W., Huang, M. T., Ho, C. T., & Huang, Q. (2008). Enhancing antiinflammation activity of curcumin through O/W nanoemulsions. Food Chemistry, 108(2), 419–424.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, X., Jiang, Y., Wang, Y. W., & Huang, Q. (2009). Enhancing stability and oral bioavailability of polyphenols using nanoemulsions (pp. 198–212). ACS Symposium Series, Vol. 1007: Micro/Nanoencapsulation of Active Food Ingredients, Chapter 13. https://doi.org/10.1021/bk-2009-1007.ch013

    Book  Google Scholar 

  29. Relkin, P., Yung, J. M., Kalnin, D., & Ollivon, M. (2008). Structural behaviour of lipid droplets in protein-stabilized nano-emulsions and stability of α-tocopherol. Food Biophysics, 3(2), 163–168.

    Article  Google Scholar 

  30. Brody, A. (2006). Nano and food packaging technologies converge. Food Technology, 60(3), 92–94.

    Google Scholar 

  31. IOM (Institute of Medicine). (2009). Nanotechnology in food products: Workshop summary. The National Academies Press. Available from: http://www.nap.edu/openbook.php?record_id=12633. Accessed 26 Feb 2010

    Google Scholar 

  32. Cientifica Report Nanotechnologies in the Food Industry, Published August 2006. Available: www.cientifica.com/www/details.php?id=47. Accessed 24 Oct 2006.

  33. Nanotechnology and the Food Industry – The Pros and Cons of Nanofoods. Available from: http://www.azonano.com/news.asp?newsID=10016. (Posted February 19, 2009). Accessed 26 Feb 2010.

  34. Pradhan, N., Singh, S., Ojha, N., Srivastava, A., Barla, A., Rai, V., et al. (2015). Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed Research International, 365672. https://doi.org/10.1155/2015/365672

  35. Renton, A. (2006). Welcome to the world of nano foods. Available at: http://observer.guardian.co.uk/foodmonthly/futureoffood/story/0,1971266,00.html. Accessed 17 Jan 2008.

  36. Weiss, J., Takhistov, P., & McClements, J. (2006). Functional materials in food nanotechnology. Journal of Food Science, 71, R107–R116. https://doi.org/10.1111/j.1750-3841.2006.00195.x

    Article  CAS  Google Scholar 

  37. Sari, P., Mann, B., Kumar, R., Singh, R. R. B., Sharma, R., Bhardwaj, M., et al. (2015). Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids, 43, 540��546. https://doi.org/10.1016/j.foodhyd.2014.07.011

    Article  CAS  Google Scholar 

  38. Langer, R., & Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AICHE Journal, 49, 2990–3006. https://doi.org/10.1002/aic.690491202

    Article  CAS  Google Scholar 

  39. Zhang, T., Lv, C., Chen, L., Bai, G., Zhao, G., & Chuanshan, X. C. (2014). Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency. Food Research International, 62, 183–192. https://doi.org/10.1016/j.foodres.2014.02.041

    Article  CAS  Google Scholar 

  40. Yang, R., Zhou, Z., Sun, G., Gao, Y., Xu, J., Strappe, P., et al. (2015). Synthesis of homogeneous protein-stabilized rutin nanodispersions by reversible assembly of soybean (Glycine max) seed ferritin. RSC Advances, 5, 31533–31540. https://doi.org/10.1039/C5RA03542B

    Article  CAS  Google Scholar 

  41. Ozturk, A. B., Argin, S., Ozilgen, M., & McClements, D. J. (2015). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum. Food Chemistry, 188, 256–263. https://doi.org/10.1016/j.foodchem.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  42. Ottaway P. B. Nanotechnology in supplements and foods – EU concerns. 2010. Available at: http://www.accessmylibrary.com/coms2/summary_0286-37130259_ITM. Accessed 26 Feb 2010.

    Google Scholar 

  43. Dekkers, S., Krystek, P., Peters, R. J., Lankveld, D. X., Bokkers, B. G., van Hoeven-Arentzen, P. H., et al. (2011). Presence and risks of nanosilica in food products. Nanotoxicology, 5, 393–405. https://doi.org/10.3109/17435390.2010.519836

    Article  CAS  PubMed  Google Scholar 

  44. Savolainen, K., Pylkkänen, L., Norppa, H., Falck, G., Lindberg, H., Tuomi, T., et al. (2010). Nanotechnologies, engineered nanomaterials and occupational health and safety – A review. Safety Science, 6, 1–7. https://doi.org/10.1016/j.ssci.2010.03.006

    Article  Google Scholar 

  45. Estevinho, B. N., & Rocha, F. (2017). A key for the future of the flavors in food industry: Nanoencapsulation and microencapsulation. In Nanotech appl in food (pp. 1–19). Elsevier.

    Google Scholar 

  46. Yu, H., Park, J. Y., Kwon, C. W., Hong, S. C., Park, K. M., & Chang, P. S. (2018). An overview of nanotechnology in food science: Preparative methods, practical applications, and safety. Journal of Chemistry, 2018, e5427978–e5427973. https://doi.org/10.1155/2018/5427978

    Article  CAS  Google Scholar 

  47. Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications: A review. Trends in Food Science & Technology, 31, 138–155.

    Article  CAS  Google Scholar 

  48. McClements, D. J. (2015). Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. Journal of Food Science, 80, N1602–N1611.

    Article  CAS  PubMed  Google Scholar 

  49. Bao, C., Jiang, P., Chai, J., Jiang, Y., Li, D., Bao, W., Liu, B., Liu, B., Norde, W., & Li, Y. (2019). The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International, 120, 130–140.

    Article  CAS  PubMed  Google Scholar 

  50. Stones, M. Nanoscience to boost food safety, quality and shelf life. Available from: http://www.meatprocess.com/Product-Categories/Ingredients-and-additives/Nanoscience-to-boost-food-safety-qualityand-shelf-life, http://www.foodhaccp.com/1news/060809i.html. Accessed 8 Jun 2009.

  51. Chaudhry, Q., Scotter, M., Blackburn, J., et al. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants, 25(3), 241–258.

    Article  CAS  PubMed  Google Scholar 

  52. Woodrow Wilson International Centre for Scholars. (2009). The Nanotechnology Consumer Inventory. Available at: www.nanotechproject. org/inventories/consumer/. Accessed 26 Feb 2010.

    Google Scholar 

  53. Sustech GMBH and Co. (2003). Patent application EP20030748025, sweet containing calcium, Germany; Sustech GMBH Co. 2004. International Patent Application: PCT/EP2003/010213 Coated chewing gum, Germany.

    Google Scholar 

  54. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Specialty biotech Thailand. Trends in Food Science and Technology, 18, 84–95.

    Article  CAS  Google Scholar 

  55. Vartiainen, J., Rättö, M., & Paulussen, S. (2005). Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films. Packaging Technology & Science, 18, 243–251.

    Article  CAS  Google Scholar 

  56. Helmke, B. P., & Minerick, A. R. (2006). Designing a nano-interface in a microfluidic chip to probe living cells: Challenges and perspectives. Proceedings of the National Academy of Sciences of the United States of America, 103, 6419–6424. https://doi.org/10.1073/pnas.0507304103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., Heer, C., et al. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53, 52–62. https://doi.org/10.1016/j.yrtph.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  58. Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., & Sijiao, L. (2004). Nanotechnology and biosensors. Biotechnology Advances, 22, 505–518. https://doi.org/10.1016/j.biotechadv.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  59. Subramanian, A. (2006). A mixed self-assembled monolayer-based surface Plasmon immunosensor for detection of E. Coli O157H7. Biosensors & Bioelectronics, 7, 998–1006. https://doi.org/10.1016/j.bios.2005.03.007

    Article  CAS  Google Scholar 

  60. Inbaraj, B. S., & Chen, B. H. (2015). Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. Journal of Food and Drug Analysis, 24, 15–28. https://doi.org/10.1016/j.jfda.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nachay, K. (2007). Analyzing nanotechnology. Food Technology, 1, 34–36.

    Google Scholar 

  62. Wang, L., Chen, W., Xu, D., Shim, B. S., Zhu, Y., Sun, F., et al. (2009). Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. Nano Letters, 9, 4147–4152. https://doi.org/10.1021/nl902368r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Couch, L. M., Wien, M., Brown, J. L., & Davidson, P. (2016). Food nanotechnology: Proposed uses, safety concerns and regulations. Agro Food Industry Hitech, 27, 36–39.

    Google Scholar 

  64. Pinto, R. J. B., Daina, S., Sadocco, P., Neto, C. P., & Trindade, T. (2013). Antibacterial activity of nanocomposites of copper and cellulose. BioMed Research International, 6, 280512. https://doi.org/10.1155/2013/280512

    Article  CAS  Google Scholar 

  65. Rico-Yuste, A., & Carrasco, S. (2019). Molecularly imprinted polymer-based hybrid materials for the development of optical sensors. Polymers, 11, 1173.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Durán, N., & Marcato, P. D. (2013). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. International Journal of Food Science and Technology, 48, 1127–1134.

    Article  Google Scholar 

  67. Jackman, J. A., Ferhan, A. R., Yoon, B. K., Park, J. H., Zhdanov, V. P., & Cho, N. J. (2017). Indirect nanoplasmonic sensing platform for monitoring temperature-dependent protein adsorption. Analytical Chemistry, 89, 12976–12983.

    Article  CAS  PubMed  Google Scholar 

  68. Gonchar, M., Smutok, O., Karkovska, M., Stasyuk, N., & Gayda, G. (2017). Yeast-based biosensors for clinical diagnostics and food control. In Biotechnology of yeasts and filamentous fungi (pp. 391–412). Springer.

    Chapter  Google Scholar 

  69. Cattò, C., & Cappitelli, F. (2019). Testing anti-biofilm polymeric surfaces: Where to start? International Journal of Molecular Sciences, 20, 3794.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Subramanian, A., Irudayaraj, J., & Ryan, T. (2006). A mixed self-assembled monolayer-based surface Plasmon immunosensor for detection of E. coli O157: H7. Biosensors & Bioelectronics, 21, 998–1006.

    Article  CAS  Google Scholar 

  71. Szendrő, I., Erdélyi, K., Puskás, Z., Fabian, M., Adanyi, N., & Somogyi, K. (2010). Development and experiments with conductive oxide nanofilm coated planar waveguide sensors. Nanopages, 7, 17–24.

    Article  Google Scholar 

  72. Vizzini, P., Braidot, M., Vidic, J., & Manzano, M. (2019). Electrochemical and optical biosensors for the detection of campylobacter and listeria: An update look. Micromachines (Basel)., 10(8), 500. https://doi.org/10.3390/mi10080500

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wolska, K. I., Grudniak, A. M., Kaminski, K., & Markowska, K. (2015). The potential of metal nanoparticles for inhibition of bacterial biofilms. In M. Rai & K. Kon (Eds.), Nanotechnology in diagnosis (pp. 119–132). Academic Press, Treatment and Prophylaxis of Infectious Diseases.

    Google Scholar 

  74. Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., & Martins, M. (2018). Fernandes AR (2018) Nano-strategies to fight multidrug resistant bacteria “A Battle of the Titans”. Frontiers in Microbiology, 9, 1441.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yaqub, A., Malkani, N., Shabbir, A., Ditta, S. A., Tanvir, F., Ali, S., Naz, M., Kazmi, S. A., & Ullah, R. (2020). Novel biosynthesis of copper nanoparticles using Zingiber and allium sp. with synergic effect of doxycycline for anticancer and bactericidal activity. Current Microbiology, 13, 1–3.

    Google Scholar 

  77. Hwang, G. B., Patir, A., Allan, E., & Nair, S. P. (2017). Parkin IP Superhydrophobic and white light-activated bactericidal surface through a simple coating. ACS Applied Materials & Interfaces, 9, 29002–29009.

    Article  CAS  Google Scholar 

  78. Hoseinzadeh, E., Makhdoumi, P., Taha, P., Hossini, H., Stelling, J., & Amjad, K. M. (2017). A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Current Drug Metabolism, 18, 120–128.

    Article  CAS  PubMed  Google Scholar 

  79. Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm forming microorganisms. Heliyon, 5, e02192.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bradley, E. L., Castle, L., & Chaudhry, Q. (2011). Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science and Technology, 22, 603–610. https://doi.org/10.1016/j.tifs.2011.01.002

    Article  CAS  Google Scholar 

  81. Tan, H., Ma, R., Lin, C., Liu, Z., & Tang, T. (2013). Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics. International Journal of Molecular Sciences, 14, 1854–1869. https://doi.org/10.3390/ijms14011854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bionanocomposites for food packaging applications. Trends in Food Science and Technology, 18, 84–95. https://doi.org/10.1021/acsami.7b04297

    Article  CAS  Google Scholar 

  83. Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363, 1–24. https://doi.org/10.1016/j.jcis.2011.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Othman, S. H. (2014). Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia, 2, 296–303. https://doi.org/10.1016/j.aaspro.2014.11.042

    Article  Google Scholar 

  85. Wyser, Y., Adams, M., Avella, M., Carlander, D., Garcia, L., Pieper, G., Rennen, M., Schuermans, J., & Weiss, J. (2016). Outlook and challenges of nanotechnologies for food packaging. Packaging Technology and Science, 29, 615–648.

    Article  CAS  Google Scholar 

  86. Yang, F. L., Li, X. G., Zhu, F., & Lei, C. L. (2009). Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Triboliumcastaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry, 57(21), 10156–10162.

    Article  CAS  PubMed  Google Scholar 

  87. Scheffler, S. L., Wang, X., Huang, L., Gonzales, F. S., & Yao, Y. (2010). Phytoglycogenoctenyl succinate, an amphilic carbohydrate nanoparticle, and epsilonpolylysine to improve lipid oxidative stability of emulsions. Journal of Agricultural and Food Chemistry, 58(1), 660–667.

    Article  CAS  PubMed  Google Scholar 

  88. Neethirajan, S., & Jayas, D. (2009). Nanotechnology for food and bioprocessing industries. 5th CIGR International Technical Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, Potsdam, Germany. 8 p. Available from: www.docstoc.com/../Suresh-Neethirajan-Nanotechnology-for-Food-andBioprocessingIndustries. Accessed 26 Feb 2010.

  89. Nanny, Nano, Boo, Boo Food?. Available from: http://towerofbabel.com/2008/08/28/nanny-nano-boo-boo-food/ (August 28, 2008). Accessed 26 Feb 2010.

  90. Nanotechnology in Agriculture and Food. Available from: http://www.nanotechproject.org/inventories/agrifood/. Accessed 26 Feb 2010.

  91. Nanoparticle protects oil in foods from oxidation, spoilage. Available from: www.purdue.edu/UNS/../091208YaoNanoparticles.html. (December 8, 2009). Accessed 26 Feb 2010.

  92. Mustafa, I. F., & Hussein, M. Z. (2020). Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials (Basel), 10(8), 1608. https://doi.org/10.3390/nano10081608. PMID: 32824489; PMCID: PMC7466655.

    Article  CAS  PubMed  Google Scholar 

  93. Nanoemulsions. Centre for biologic nanotechnology. Available from: www.vitamincity.com/umichnanobio.htm. Accessed 26 Feb 2010.

  94. Choi, A. J., Kim, C. J., Cho, Y. J., Hwang, J. K., & Kim, C. T. Solubilization of capsaicin and its nanoemulsion formation in the sonication and self assembly processes. Available from: http://www.nsti.org/BioNano2008/showabstract.html?absno=462. Accessed 26 Feb 2010.

  95. Weiss, J., Decker, E. A., McClements, J., Kristbergsson, K., Helgason, T., & Awad, T. S. (2008). Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophysics, 3(2), 146–154.

    Article  Google Scholar 

  96. Sabliov, C. M., & Astete, C. E. (2007). Controlled release technologies for targeted nutrition: Encapsulation and controlled release of antioxidants and vitamins via polymeric nanoparticles. Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals Garti N. ed. Chapter 17. Available from: http://www.chipsbooks.com/delbioac.htm. Accessed 26 Feb 2010

    Google Scholar 

  97. Sabliov, C. New and emerging food applications of polymeric nanoparticles for improved health. IFT International Food Nanoscience Conference 2009 June 6. Available from: http://members.ift.org/IFT/Research/ConferencePapers/foodnanoscience2009.htm. Accessed 26 Feb 2010.

  98. IOM (Institute of Medicine). (2009). Nanotechnology in food products: Workshop summary. The National Academies Press. Available from: http://www.nap.edu/openbook.php?record_id=12633. Accessed 26 Feb 2010.

  99. Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnOnanofluids). Journal of Nanoparticle Research, 9(3), 479–489.

    Article  Google Scholar 

  100. Munro, I. C., Haighton, L. A., Lynch, B. S., & Tafazoli, S. (2009). Technological challenges of addressing new and more complex migrating products from novel food packaging materials. Food Addit Contam: Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment, 26(12), 1534–1546.

    CAS  Google Scholar 

  101. Garti, N., & Aserin, A. (2007). Understanding and controlling the microstructure of complex foods. In M. D. Julian (Ed.), Nanoscale liquid self-assembled dispersions in foods and the delivery of functional ingredients (pp. 504–553). Woodhead Publishing Ltd..

    Google Scholar 

  102. Garti, N. (Ed.). (2008). Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing.

    Google Scholar 

  103. Cheng, Q., Li, C., Pavlinek, V., Saha, P., & Wang, H. (2006). Surface-modified antibacterial TiO2/AgC nanoparticles: Preparation and properties. Applications of Surface Science, 252, 4154–4160. https://doi.org/10.1016/j.apsusc.2005.06.022

    Article  CAS  Google Scholar 

  104. McClements, D. J., & Xiao, H. (2017). Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj Science of Food, 1, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Elbagory, A. M., Cupido, C. N., Meyer, M., & Hussein, A. A. (2016). Large scale screening of southern African plant extracts for the green synthesis of gold nanoparticles using microtitre-plate method. Molecules, 21, E1498. https://doi.org/10.3390/molecules21111498

    Article  CAS  Google Scholar 

  106. McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51, 285–330.

    Article  CAS  PubMed  Google Scholar 

  107. Naseer, B., Srivastava, G., Qadri, O. S., Faridi, S. A., Islam, R. U., & Younis, K. (2018). Importance and health hazards of nanoparticles used in the food industry. Nanotechnology Reviews, 7, 623–641.

    Article  CAS  Google Scholar 

  108. Pan, Z., Lee, W., Slutsky, L., Clark, R. A. F., Pernodet, N., & Rafailovich, M. H. (2009). Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small, 5(4), 511–520. https://doi.org/10.1002/smll.200800798

    Article  CAS  PubMed  Google Scholar 

  109. WHO: Nanotechnology and human health: Scientific evidence and risk governance. Report of the WHO expert meeting 10–11 December 2012, WHO Regional Office for Europe, 2013. http://apps.who.int/iris/bitstream/handle/10665/108626/e96927.pdf?sequence=1

  110. WHO guidelines on protecting workers from potential risks of manufactured nanomaterials. Geneva: World Health Organization; 2017. License: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/handle/10665/259671/9789241550048-eng.pdf

  111. Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., & Rather, I. A. (2017). Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology, 8, 1501. https://doi.org/10.3389/fmicb.2017.01501

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank all our colleagues and secretaries for their help during the preparation of the manuscript by providing all the relevant information. Thanks to Ms. Bethany Pond for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Guha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guha, S., Chakraborty, A., Chakraborty, D. (2023). Application of Nanotechnology in Food Microbiology: Implication on Public Health. In: Chaughule, R.S., Lokur, A.S. (eds) Applications of Nanotechnology in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-031-49933-3_6

Download citation

Publish with us

Policies and ethics