Skip to main content

Regenerative Medicine in Clinical and Aesthetic Dermatology

  • Chapter
  • First Online:
A Comprehensive Guide to Male Aesthetic and Reconstructive Plastic Surgery

Abstract

Regenerative medicine focuses on the use of biological methods to repair or replace tissue or organ function that has been lost due to aging, disease, or damage. The use of regenerative medicine techniques in the field of clinical and cosmetic dermatology is growing and centers on improving the treatment of various skin conditions and targeting specific aesthetic concerns.

Herein, we review emerging techniques in the field of regenerative medicine and explore how recent advances are being applied in clinical and aesthetic dermatology. More specifically, part 1 of this chapter will dive into common therapeutic and regenerative strategies, including platelet-rich plasma, stem cells, and exosomes. Part 2 of this chapter aims to explore how these novel therapies are emerging in the management of wound healing, scar reduction, anti-aging and skin rejuvenation, immune-mediated dermatoses, and alopecia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boddu S, et al. Regenerative medicine in cosmetic dermatology. Cutis. 2018;101:33–6.

    PubMed  Google Scholar 

  2. Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62:489–96.

    Article  PubMed  Google Scholar 

  3. Eppley BL, Pietrzak WS, Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery: Plast. Reconstr Surg. 2006;118:147e–59e.

    Article  CAS  Google Scholar 

  4. Zarbafian M, Fabi SG, Dayan S, Goldie K. The emerging field of regenerative aesthetics—where we are now. Dermatol Surg. 2022;48:101–8.

    Article  CAS  PubMed  Google Scholar 

  5. Fabi S, Sundaram H. The potential of topical and injectable growth factors and cytokines for skin rejuvenation. Facial Plast Surg. 2014;30:157–71.

    Article  CAS  PubMed  Google Scholar 

  6. Mehta RC, et al. Reduction in facial photodamage by a topical growth factor product. J Drugs Dermatol. 2008;7:864–71.

    PubMed  Google Scholar 

  7. Barone F, Bashey S, Woodin FW Jr. Clinical evidence of dermal and epidermal restructuring from a biologically active growth factor serum for skin rejuvenation. J Drugs Dermatol. 2019;18:290–5.

    PubMed  Google Scholar 

  8. Hussain M, Phelps R, Goldberg DJ. Clinical, histologic, and ultrastructural changes after use of human growth factor and cytokine skin cream for the treatment of skin rejuvenation. J Cosmet Laser Ther. 2008;10:104–9.

    Article  PubMed  Google Scholar 

  9. Martin P. Wound healing—aiming for perfect skin regeneration. Science. 1997;276:75–81.

    Article  CAS  PubMed  Google Scholar 

  10. Hu S, et al. Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin Photoaging. ACS Nano. 2019;13:11273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia BA, et al. The platelet microparticle proteome. J Proteome Res. 2005;4:1516–21.

    Article  CAS  PubMed  Google Scholar 

  12. Goldstein S, Harley CB. In vitro studies of age-associated diseases. Fed Proc. 1979;38:1862–7.

    CAS  PubMed  Google Scholar 

  13. Vavken P, Saad FA, Murray MM. Age dependence of expression of growth factor receptors in porcine ACL fibroblasts: AGE-DEPENDENT GROWTH FACTOR RECEPTORS. J Orthop Res. 2010;28:1107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chahla J, et al. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical Orthopaedic literature. J Bone Joint Surg. 2017;99:1769–79.

    Article  PubMed  Google Scholar 

  15. Zhang J, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med. 2015;13:49.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amirkhani MA, et al. Rejuvenation of facial skin and improvement in the dermal architecture by transplantation of autologous stromal vascular fraction: a clinical study. Bioimpacts. 2016;6:149–54.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim W-S, Park B-S, Sung J-H. Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch Dermatol Res. 2009;301:329–36.

    Article  PubMed  Google Scholar 

  18. Murohara T, Shintani S, Kondo K. Autologous adipose-derived regenerative cells for therapeutic angiogenesis. Curr Pharm Des. 2009;15:2784–90.

    Article  CAS  PubMed  Google Scholar 

  19. Rehman J, et al. Secretion of Angiogenic and Antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.

    Article  PubMed  Google Scholar 

  20. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25:818–27.

    Article  PubMed  Google Scholar 

  21. Hong L, Peptan IA, Colpan A, Daw JL. Adipose tissue engineering by human adipose-derived stromal cells. Cells Tissues Organs. 2006;183:133–40.

    Article  CAS  PubMed  Google Scholar 

  22. Noël D, et al. Cell specific differences between human adipose-derived and mesenchymal–stromal cells despite similar differentiation potentials. Exp Cell Res. 2008;314:1575–84.

    Article  PubMed  Google Scholar 

  23. Lin G, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev. 2008;17:1053–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han C, et al. Exosomes and their therapeutic potentials of stem cells. Stem Cells Int. 2016;2016:1–11.

    Google Scholar 

  25. Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther. 2018;9:187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics. 2013;13:1637–53.

    Article  CAS  PubMed  Google Scholar 

  27. Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49:e346.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gentile P, Garcovich S. Concise review: adipose-derived stem cells (ASCs) and adipocyte-secreted Exosomal microRNA (A-SE-miR) modulate cancer growth and proMote wound repair. J Clin Med. 2019;8:855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ko SH, et al. The role of stem cells in cutaneous wound healing: what do we really know? Plast Reconstr Surg. 2011;127:10S–20S.

    Article  CAS  PubMed  Google Scholar 

  30. Andia I, Abate M. Platelet-rich plasma: underlying biology and clinical correlates. Regen Med. 2013;8:645–58.

    Article  CAS  PubMed  Google Scholar 

  31. Xu P, et al. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. Burns. Trauma. 2020;8:tkaa028.

    Google Scholar 

  32. Babaei V, et al. Management of chronic diabetic foot ulcers using platelet-rich plasma. J Wound Care. 2017;26:784–7.

    Article  CAS  PubMed  Google Scholar 

  33. Roubelakis MG, et al. Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev Rep. 2014;10:417–28.

    Article  CAS  PubMed  Google Scholar 

  34. Lian Z, et al. Synergistic effect of bone marrow-derived mesenchymal stem cells and platelet-rich plasma in Streptozotocin-induced diabetic rats. Ann Dermatol. 2014;26:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park YG, Lee IH, Park ES, Kim JY. Hydrogel and platelet-rich plasma combined treatment to accelerate wound healing in a nude mouse model. Arch Plast Surg. 2017;44:194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eirin A, et al. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene. 2014;551:55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cai Y, Li J, Jia C, He Y, Deng C. Therapeutic applications of adipose cell-free derivatives: a review. Stem Cell Res Ther. 2020;11:312.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Belvedere R, et al. Mesoglycan induces the secretion of microvesicles by keratinocytes able to activate human fibroblasts and endothelial cells: a novel mechanism in skin wound healing. Eur J Pharmacol. 2020;869:172894.

    Article  PubMed  Google Scholar 

  39. Zhao D, et al. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration. J Mol Histol. 2020;51:251–63.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao G, et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther. 2020;11:174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang B, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 2015;33:2158–68.

    Article  CAS  PubMed  Google Scholar 

  42. Hu L, et al. Author correction: exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 2020;10:6693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xin W, et al. Human bone marrow mesenchymal stem cell–derived exosomes attenuate blood–spinal cord barrier disruption via the timp2/mmp pathway after acute spinal cord injury. Mol Neurobiol. 2021;58:6490–504.

    Article  CAS  PubMed  Google Scholar 

  44. Shafei S, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: an in vivo study. J Biomed Mater Res A. 2020;108:545–56.

    Article  CAS  PubMed  Google Scholar 

  45. Wu P, Zhang B, Shi H, Qian H, Xu W. MSC-exosome: a novel cell-free therapy for cutaneous regeneration. Cytotherapy. 2018;20:291–301.

    Article  PubMed  Google Scholar 

  46. Ogawa R, Akaishi S. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis—keloids and hypertrophic scars may be vascular disorders. Med Hypotheses. 2016;96:51–60.

    Article  CAS  PubMed  Google Scholar 

  47. Dhall S, et al. A Flowable placental formulation prevents Bleomycin-induced dermal fibrosis in aged mice. Int J Mol Sci. 2020;21:4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen J, et al. Blockade of lncRNA-ASLNCS5088–enriched exosome generation in M2 macrophages by GW4869 dampens the effect of M2 macrophages on orchestrating fibroblast activation. FASEB J. 2019;33:12200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiong M, et al. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res. 2021;166:105490.

    Article  CAS  PubMed  Google Scholar 

  50. Fang S, et al. Umbilical cord-derived mesenchymal stem cell-derived Exosomal MicroRNAs suppress Myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl Med. 2016;5:1425–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu Y, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics. 2018;8:169–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang W, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res. 2018;370:333–42.

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, et al. Author correction: exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci Rep. 2021;11:3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang M, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding Nanodressing with exosome release. ACS Nano. 2019;13:10279–93.

    Article  CAS  PubMed  Google Scholar 

  55. Soliman YS, et al. Update on acne scar treatment. Cutis. 2018;102:21; 25;47;48 .

    Google Scholar 

  56. Zaleski-Larsen LA, Fabi SG, McGraw T, Taylor M. Acne scar treatment: a multimodality approach tailored to scar type. Dermatol Surg. 2016;42:S139–49.

    Article  CAS  PubMed  Google Scholar 

  57. Fabbrocini G, Fardella N, Monfrecola A, Proietti I, Innocenzi D. Acne scarring treatment using skin needling. Clin Exp Dermatol. 2009;34:874–9.

    Article  CAS  PubMed  Google Scholar 

  58. Kang C, Lu D. Combined effect of microneedling and platelet-rich plasma for the treatment of acne scars: a meta-analysis. Front Med. 2022;8:788754.

    Article  Google Scholar 

  59. Hashim PW, Levy Z, Cohen JL, Goldenberg G. Microneedling therapy with and without platelet-rich plasma. Cutis. 2017;99:239–42.

    PubMed  Google Scholar 

  60. Lubkowska A, Dolegowska B, Banfi G. Growth factor content in PRP and their applicability in medicine. J Biol Regul Homeost Agents. 2012;26:3S–22S.

    CAS  PubMed  Google Scholar 

  61. Asif M, Kanodia S, Singh K. Combined autologous platelet-rich plasma with microneedling verses microneedling with distilled water in the treatment of atrophic acne scars: a concurrent split-face study. J Cosmet Dermatol. 2016;15:434–43.

    Article  PubMed  Google Scholar 

  62. Fabbrocini G, et al. Combined use of skin needling and platelet-rich plasma in acne scarring treatment. Cosmet Dermatol. 2011;24:177–83.

    Google Scholar 

  63. Chawla S. Split face comparative study of microneedling with PRP versus microneedling with vitamin C in treating atrophic post acne scars. J Cutan Aesthet Surg. 2014;7:209.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hassan AS, El-Hawary MS, Abdel Raheem HM, Abdallah SH, El-Komy MM. Treatment of atrophic acne scars using autologous platelet-rich plasma vs combined subcision and autologous platelet-rich plasma: a split-face comparative study. J Cosmet Dermatol. 2020;19:456–61.

    Article  PubMed  Google Scholar 

  65. Lee JW, Kim BJ, Kim MN, Mun SK. The efficacy of autologous platelet rich plasma combined with ablative carbon dioxide fractional resurfacing for acne scars: a simultaneous Split-face trial. Dermatol Surg. 2011;37:931–8.

    Article  CAS  PubMed  Google Scholar 

  66. Todorova K, Mandinova A. Novel approaches for managing aged skin and nonmelanoma skin cancer. Adv Drug Deliv Rev. 2020;153:18–27.

    Article  CAS  PubMed  Google Scholar 

  67. Kohl E, Steinbauer J, Landthaler M, Szeimies R-M. Skin ageing: Skin ageing. J Eur Acad Dermatol Venereol. 2011;25:873–84.

    Article  CAS  PubMed  Google Scholar 

  68. Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm. 2019;555:49–62.

    Article  CAS  PubMed  Google Scholar 

  69. Udompataikul M, Sripiroj P, Palungwachira P. An oral nutraceutical containing antioxidants, minerals and glycosaminoglycans improves skin roughness and fine wrinkles. Int J Cosmet Sci. 2009;31:427–35.

    Article  CAS  PubMed  Google Scholar 

  70. Saluja SS, Fabi SG. A holistic approach to antiaging as an adjunct to antiaging procedures: a review of the literature. Dermatol Surg. 2017;43:475–84.

    Article  CAS  PubMed  Google Scholar 

  71. Proffer SL, et al. Efficacy and tolerability of topical platelet exosomes for skin rejuvenation: six-week results. Aesthet Surg J. 2022;42:1185–93.

    Article  PubMed  Google Scholar 

  72. Kang BK, Shin MK, Lee JH, Kim NI. Effects of platelet-rich plasma on wrinkles and skin tone in Asian lower eyelid skin: preliminary results from a prospective, randomised, split-face trial. Eur J Dermatol. 2014;24:100–1.

    Article  PubMed  Google Scholar 

  73. Cameli N, et al. Autologous pure platelet-rich plasma dermal injections for facial skin rejuvenation: clinical, instrumental, and flow cytometry assessment. Dermatol Surg. 2017;43:826–35.

    Article  CAS  PubMed  Google Scholar 

  74. Nofal E, Helmy A, Nofal A, Alakad R, Nasr M. Platelet-rich plasma versus CROSS technique with 100% trichloroacetic acid versus combined skin needling and platelet rich plasma in the treatment of atrophic acne scars: a comparative study. Dermatol Surg. 2014;40:864–73.

    CAS  PubMed  Google Scholar 

  75. Gawdat HI, Tawdy AM, Hegazy RA, Zakaria MM, Allam RS. Autologous platelet-rich plasma versus readymade growth factors in skin rejuvenation: a split face study. J Cosmet Dermatol. 2017;16:258–64.

    Article  PubMed  Google Scholar 

  76. Charles-de-Sá L, et al. Effect of use of platelet-rich plasma (PRP) in skin with intrinsic aging process. Aesthet Surg J. 2018;38:321–8.

    Article  PubMed  Google Scholar 

  77. Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016;43:268–74.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Moon KM, et al. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Int J Mol Sci. 2012;13:1239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim W-S, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48:15–24.

    Article  CAS  PubMed  Google Scholar 

  80. Choi JS, et al. Functional recovery in photo-damaged human dermal fibroblasts by human adipose-derived stem cell extracellular vesicles. J Extracell Vesicles. 2019;8:1565885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liang J-X, et al. Antiaging properties of exosomes from adipose-derived mesenchymal stem cells in Photoaged rat skin. Biomed Res Int. 2020;2020:1–13.

    CAS  Google Scholar 

  82. Charles-de-Sá L, et al. Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells: Plast. Reconstr Surg. 2015;135:999–1009.

    Article  Google Scholar 

  83. Wang X, Shu X, Huo W, Zou L, Li L. Efficacy of protein extracts from medium of adipose-derived stem cells via microneedles on Asian skin. J Cosmet Laser Ther. 2018;20:237–44.

    Article  PubMed  Google Scholar 

  84. Zhou B, et al. The efficacy of conditioned media of adipose-derived stem cells combined with ablative carbon dioxide fractional resurfacing for atrophic acne scars and skin rejuvenation. J Cosmet Laser Ther. 2016;18:138–48.

    Article  PubMed  Google Scholar 

  85. Rigotti G, et al. Expanded stem cells, stromal-vascular fraction, and platelet-rich plasma enriched fat: comparing results of different facial rejuvenation approaches in a clinical trial. Aesthet Surg J. 2016;36:261–70.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kim W-S, Park B-S, Park S-H, Kim H-K, Sung J-H. Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci. 2009;53:96–102.

    Article  CAS  PubMed  Google Scholar 

  87. Kim Y-J, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem Biophys Res Commun. 2017;493:1102–8.

    Article  CAS  PubMed  Google Scholar 

  88. Liu S-J, et al. Umbilical cord mesenchymal stem cell-derived exosomes ameliorate HaCaT cell photo-aging. Rejuvenation Res. 2021;24:283–93.

    Article  CAS  PubMed  Google Scholar 

  89. Deng M, et al. Human umbilical cord mesenchymal stem cell-derived and dermal fibroblast-derived extracellular vesicles protect dermal fibroblasts from ultraviolet radiation-induced photoaging in vitro. Photochem Photobiol Sci. 2020;19:406–14.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang K, et al. Topical application of exosomes derived from human umbilical cord mesenchymal stem cells in combination with sponge spicules for treatment of Photoaging. Int J Nanomedicine. 2020;15:2859–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim Y-J, et al. Conditioned media from human umbilical cord blood-derived mesenchymal stem cells stimulate rejuvenation function in human skin. Biochem Biophys Rep. 2018;16:96–102.

    PubMed  PubMed Central  Google Scholar 

  92. Ye L, Swingen C, Zhang J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr Cardiol Rev. 2013;9:63–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Oh M, Lee J, Kim Y, Rhee W, Park J. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int J Mol Sci. 2018;19:1715.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bae Y-U, et al. Embryonic stem cell–derived mmu-mir-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-β receptor 2 pathway. J Gerontol Ser A. 2019;74:1359–67.

    Article  CAS  Google Scholar 

  95. Go YY, Lee CM, Ju WM, Chae S-W, Song J-J. Extracellular vesicles (Secretomes) from human trophoblasts promote the regeneration of skin fibroblasts. Int J Mol Sci. 2021;22:6959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population–based study. J Allergy Clin Immunol. 2013;132:1132–8.

    Article  PubMed  Google Scholar 

  97. Odhiambo JA, Williams HC, Clayton TO, Robertson CF, Asher MI. Global variations in prevalence of eczema symptoms in children from ISAAC phase three. J Allergy Clin Immunol. 2009;124:1251–1258.e23.

    Article  PubMed  Google Scholar 

  98. Shin T-H, Kim H-S, Choi S, Kang K-S. Mesenchymal stem cell therapy for inflammatory skin diseases: clinical potential and mode of action. Int J Mol Sci. 2017;18:244.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Oliveira C, Torres T. More than skin deep: the systemic nature of atopic dermatitis. Eur J Dermatol. 2019;29:250–8.

    Article  CAS  PubMed  Google Scholar 

  100. Torres T, et al. Update on atopic dermatitis. Acta Médica Port. 2019;32:606–13.

    Article  CAS  Google Scholar 

  101. Shin K-O, et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de novo synthesis of ceramides in atopic dermatitis. Cell. 2020;9:680.

    Article  CAS  Google Scholar 

  102. Parisi R, et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. https://doi.org/10.1136/bmj.m1590.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li J, et al. Psoriatic dermal-derived mesenchymal stem cells reduce keratinocyte junctions, and increase glycolysis. Acta Derm Venereol. 2020;100:adv00122-7.

    Article  Google Scholar 

  104. Jiang M, et al. Keratinocyte exosomes activate neutrophils and enhance skin inflammation in psoriasis. FASEB J. 2019;33:13241–53.

    Article  CAS  PubMed  Google Scholar 

  105. Shao S, et al. Neutrophil exosomes enhance the skin autoinflammation in generalized pustular psoriasis via activating keratinocytes. FASEB J. 2019;33:6813–28.

    Article  CAS  PubMed  Google Scholar 

  106. Cheung KL, et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J Exp Med. 2016;213:2399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chottawornsak N, et al. Skin signs in juvenile- and adult-onset systemic lupus erythematosus: clues to different systemic involvement. Lupus. 2018;27:2069–75.

    Article  CAS  PubMed  Google Scholar 

  108. Figueroa FE, Cuenca Moreno J, La Cava A. Novel approaches to lupus drug discovery using stem cell therapy. Role of mesenchymal-stem-cell-secreted factors. Expert Opin Drug Discovery. 2014;9:555–66.

    Article  CAS  Google Scholar 

  109. Lee JY, Park JK, Lee EY, Lee EB, Song YW. Circulating exosomes from patients with systemic lupus erythematosus induce a proinflammatory immune response. Arthritis Res Ther. 2016;18:264.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hong S-M, et al. MicroRNAs in systemic lupus erythematosus: a perspective on the path from biological discoveries to clinical practice. Curr Rheumatol Rep. 2020;22:17.

    Article  CAS  PubMed  Google Scholar 

  111. Salvi V, et al. Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7. JCI Insight. 2018;3:e98204.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Perez-Hernandez J, et al. Increased urinary Exosomal MicroRNAs in patients with systemic lupus erythematosus. PLoS One. 2015;10:e0138618.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Dong C, et al. Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells. Biomed Res Int. 2019;2019:1–10.

    Google Scholar 

  114. Reddy BY, Xu DS, Hantash BM. Mesenchymal stem cells as Immunomodulator therapies for immune-mediated systemic dermatoses. Stem Cells Dev. 2012;21:352–62.

    Article  CAS  PubMed  Google Scholar 

  115. Liu S, et al. MSC transplantation improves osteopenia via epigenetic regulation of Notch signaling in lupus. Cell Metab. 2015;22:606–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nakamura K, et al. Altered expression of CD63 and exosomes in scleroderma dermal fibroblasts. J Dermatol Sci. 2016;84:30–9.

    Article  CAS  PubMed  Google Scholar 

  117. Glennon-Alty L, Hackett AP, Chapman EA, Wright HL. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med. 2018;125:25–35.

    Article  CAS  PubMed  Google Scholar 

  118. Li L, Zuo X, Liu D, Luo H, Zhu H. The profiles of miRNAs and lncRNAs in peripheral blood neutrophils exosomes of diffuse cutaneous systemic sclerosis. J Dermatol Sci. 2020;98:88–97.

    Article  CAS  PubMed  Google Scholar 

  119. Li L, et al. Neutrophil-derived exosome from systemic sclerosis inhibits the proliferation and migration of endothelial cells. Biochem Biophys Res Commun. 2020;526:334–40.

    Article  CAS  PubMed  Google Scholar 

  120. Wermuth PJ, Piera-Velazquez S, Jimenez SA. Exosomes isolated from serum of systemic sclerosis patients display alterations in their content of profibrotic and antifibrotic microRNA and induce a profibrotic phenotype in cultured normal dermal fibroblasts. Clin Exp Rheumatol. 2017;35(Suppl 106):21–30.

    PubMed  PubMed Central  Google Scholar 

  121. Chen C, et al. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res. 2017;27:559–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zöller M, et al. Immunoregulatory effects of myeloid-derived suppressor cell exosomes in mouse model of autoimmune alopecia Areata. Front Immunol. 2018;9:1279.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Guo H, Cheng Y, Shapiro J, McElwee K. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol. 2015;11:1335–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zöller M, McElwee KJ, Vitacolonna M, Hoffmann R. The progressive state, in contrast to the stable or regressive state of alopecia areata, is reflected in peripheral blood mononuclear cells. Exp Dermatol. 2004;13:435–44.

    Article  PubMed  Google Scholar 

  125. Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle: resting stage of the hair follicle cycle. Biol Rev. 2015;90:1179–96.

    Article  PubMed  Google Scholar 

  126. Anudeep TC, et al. Advancing regenerative cellular therapies in non-scarring alopecia. Pharmaceutics. 2022;14:612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mecklenburg L, et al. Active hair growth (Anagen) is associated with angiogenesis. J Invest Dermatol. 2000;114:909–16.

    Article  CAS  PubMed  Google Scholar 

  128. Pakhomova EE, Smirnova IO. Comparative evaluation of the clinical efficacy of PRP-therapy, Minoxidil, and their combination with Immunohistochemical study of the dynamics of cell proliferation in the treatment of men with androgenetic alopecia. Int J Mol Sci. 2020;21:6516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li ZJ, et al. Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth. Dermatol Surg. 2012;38:1040–6.

    Article  CAS  PubMed  Google Scholar 

  130. Ferraris C, Cooklis M, Polakowska RR, Haake AR. Induction of apoptosis through the PKC pathway in cultured dermal papilla fibroblasts. Exp Cell Res. 1997;234:37–46.

    Article  CAS  PubMed  Google Scholar 

  131. Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest. 2001;107:409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hausauer AK, Jones DH. Evaluating the efficacy of different platelet-rich plasma regimens for Management of Androgenetic Alopecia: a single-center, blinded. Randomized Clinical Trial Dermatol Surg. 2018;44:1191–200.

    CAS  PubMed  Google Scholar 

  133. Dubin DP, et al. The effect of platelet-rich plasma on female androgenetic alopecia: a randomized controlled trial. J Am Acad Dermatol. 2020;83:1294–7.

    Article  CAS  PubMed  Google Scholar 

  134. Kachhawa D, et al. A spilt head study of efficacy of placebo versus platelet-rich plasma injections in the treatment of androgenic alopecia. J Cutan Aesthet Surg. 2017;10:86.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Albalat W, Ebrahim HM. Evaluation of platelet-rich plasma vs intralesional steroid in treatment of alopecia areata. J Cosmet Dermatol. 2019;18:1456–62.

    Article  PubMed  Google Scholar 

  136. Gupta AK, et al. Platelet-rich plasma as a treatment for androgenetic alopecia. Dermatol Surg. 2019;45:1262–73.

    Article  CAS  PubMed  Google Scholar 

  137. Butt G, Hussain I, Ahmad FJ, Choudhery MS. Stromal vascular fraction-enriched platelet-rich plasma therapy reverses the effects of androgenetic alopecia. J Cosmet Dermatol. 2020;19:1078–85.

    Article  PubMed  Google Scholar 

  138. Kang J-I, et al. Vanillic acid stimulates Anagen signaling via the PI3K/Akt/ β-catenin pathway in dermal papilla cells. Biomol Ther. 2020;28:354–60.

    Article  CAS  Google Scholar 

  139. Bernard BA. The hair follicle enigma. Exp Dermatol. 2017;26:472–7.

    Article  PubMed  Google Scholar 

  140. Zhou L, et al. Regulation of hair follicle development by exosomes derived from dermal papilla cells. Biochem Biophys Res Commun. 2018;500:325–32.

    Article  CAS  PubMed  Google Scholar 

  141. Hu S, et al. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling. Sci Adv. 2020;6:eaba1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yan H, et al. Exosomal micro RNAs derived from dermal papilla cells mediate hair follicle stem cell proliferation and differentiation. Int J Biol Sci. 2019;15:1368–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Stem cells from human hair follicles: first mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Invest. 2017;4:58.

    Article  Google Scholar 

  144. Sugiyama-Nakagiri Y, Akiyama M, Shimizu H. Hair follicle stem cell-targeted gene transfer and reconstitution system. Gene Ther. 2006;13:732–7.

    Article  CAS  PubMed  Google Scholar 

  145. Kwack MH, et al. Exosomes derived from human dermal papilla cells promote hair growth in cultured human hair follicles and augment the hair-inductive capacity of cultured dermal papilla spheres. Exp Dermatol. 2019;28:854–7.

    Article  CAS  PubMed  Google Scholar 

  146. Stefanis AJ, Groh T, Arenbergerova M, Arenberger P, Bauer PO. Stromal vascular fraction and its role in the management of alopecia: a review. J Clin Aesthet Dermatol. 2019;12(11):35–44. Epub 2019 Nov 1. PMID: 32038756; PMCID: PMC6937163.

    Google Scholar 

  147. Shin H, Ryu HH, Kwon O, Park B-S, Jo SJ. Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: a retrospective case series study. Int J Dermatol. 2015;54:730–5.

    Article  PubMed  Google Scholar 

  148. Perez-Meza D, et al. Hair follicle growth by stromal vascular fraction-enhanced adipose transplantation in baldness. Stem Cells Cloning Adv Appl. 2017;10:1–10.

    Google Scholar 

  149. Rajendran RL, et al. Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep. 2017;7:15560.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wang C, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019;9:65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yue K, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nooshabadi VT, et al. Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. J Biomed Mater Res A. 2020;108:2138–49.

    Article  CAS  PubMed  Google Scholar 

  153. Li M, et al. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J Mater Chem B. 2016;4:6830–41.

    Article  CAS  PubMed  Google Scholar 

  154. Xu N, et al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int J Biol Macromol. 2018;117:102–7.

    Article  CAS  PubMed  Google Scholar 

  155. Shi Q, et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol. 2017;8:904.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wang C, et al. The fabrication of a highly efficient self-healing hydrogel from natural biopolymers loaded with exosomes for the synergistic promotion of severe wound healing. Biomater Sci. 2020;8:313–24.

    Article  Google Scholar 

  157. Yang G, et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano. 2019;13:4354–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha D. Verling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verling, S.D., Mashoudy, K., Gompels, M., Goldenberg, G. (2024). Regenerative Medicine in Clinical and Aesthetic Dermatology. In: Thaller, S.R., Cohen, M.N. (eds) A Comprehensive Guide to Male Aesthetic and Reconstructive Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-48503-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48503-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48502-2

  • Online ISBN: 978-3-031-48503-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics