Skip to main content

Human Genetics of Truncus Arteriosus

  • Chapter
  • First Online:
Congenital Heart Diseases: The Broken Heart

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1441))

  • 419 Accesses

Abstract

Integrated human genetics and molecular/developmental biology studies have revealed that truncus arteriosus is highly associated with 22q11.2 deletion syndrome. Other congenital malformation syndromes and variants in genes encoding TBX, GATA, and NKX transcription factors and some signaling proteins have also been reported as its etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamagishi H, Fukuda K. Truncus arteriosus. In: Lang F, editor. Encyclopedia of molecular mechanisms of disease. Springer; 2009. Version: print (book), LXXXVI, 2270 p. 646 illus. In 3 volumes, not available separately. Hardcover ISBN: 978-3-540-67136-7.

    Google Scholar 

  2. Ferencz C, Correa-Villasenor A, Loffredo CA, editors. Genetic and environmental risk factors of major cardiovascular malformations: the Baltimore-Washington infant study: 1981–1989. Armonk: Futura Publishing Co; 1997.

    Google Scholar 

  3. Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on cardiovascular disease in the young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:2995–3014.

    Article  PubMed  Google Scholar 

  4. Kodo K, Yamagishi H. A decade of advances in the molecular embryology and genetics underlying congenital heart defects. Circ J. 2011;75:2296–304.

    Article  CAS  PubMed  Google Scholar 

  5. Yamagishi H. The 22q11.2 deletion syndrome. Keio J Med. 2002;51:77–88.

    Article  CAS  PubMed  Google Scholar 

  6. Yamagishi H, Srivastava D. Unraveling the genetic and developmental mysteries of 22q11 deletion syndrome. Trends Mol Med. 2003;9:383–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nora JJ, Nora AH. Update on counseling the family with a first degree relative with a congenital heart defect. Am J Med Genet. 1988;29:137–42.

    Article  CAS  PubMed  Google Scholar 

  8. Pierpont MEM, Gobel JW, Moller JH, et al. Cardiac malformations in relatives of children with truncus arteriosus or interruption of the aortic arch. Am J Cardiol. 1988;61:423–7.

    Article  CAS  PubMed  Google Scholar 

  9. Lindsay EA, Baldini A. Congenital heart defects and 22q11 deletions: which genes count? Mol Med Today. 1998;4:350–7.

    Article  CAS  PubMed  Google Scholar 

  10. Goldmuntz E, Clark BJ, Mitchell LE, et al. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol. 1988;32:492–8.

    Article  Google Scholar 

  11. Maeda J, Yamagishi H, Matsuoka R, et al. Frequent association of 22q11.2 deletion with tetralogy of Fallot. Am J Med Genet. 2000;92:269–72.

    Article  CAS  PubMed  Google Scholar 

  12. Mlynarski EE, Xie M, Taylor D, et al. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome. Hum Genet. 2016;135:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao Y, Diacou A, Johnston HR, et al. Complete sequence of the 22q11.2 allele in 1,053 subjects with 22q11.2 deletion syndrome reveals modifiers of Conotruncal heart defects. Am J Hum Genet. 2020;106:26–40.

    Article  CAS  PubMed  Google Scholar 

  14. Momma K, Ando M, Matsuoka R. Truncus arteriosus communis associated with chromosome 22q11 deletion. J Am Coll Cardiol. 1997;30:1067–71.

    Article  CAS  PubMed  Google Scholar 

  15. Lalani SR, Safiullah AM, Fernbach SD, et al. Spectrum of CHD7 variants in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet. 2006;78:303–14.

    Article  CAS  PubMed  Google Scholar 

  16. Lalani SR, Safiullah AM, Molinari LM, et al. SEMA3E variant in a patient with CHARGE syndrome. J Med Genet. 2004;41:e94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia-Barcelo M-M, Wong KK, Lui VC, et al. Identification of a HOXD13 variant in a VACTERL patient. Am J Med Genet. 2008;146A:3181–5.

    Article  CAS  PubMed  Google Scholar 

  18. Daw SCM, Taylor C, Kraman M, et al. A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nat Genet. 1996;13:458–61.

    Article  CAS  PubMed  Google Scholar 

  19. Yamagishi H, Garg V, Matsuoka R, et al. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science. 1999;283:1158–61.

    Article  CAS  PubMed  Google Scholar 

  20. Kunte A, Ivey C, Yamagishi C, et al. A common cis-acting sequence in the DiGeorge critical region regulates bi-directional transcription of UFD1L and CDC45L. Mech Dev. 2001;108:81–92.

    Article  CAS  PubMed  Google Scholar 

  21. Verloove-Vanhorick SP, Brubakk AM, Ruys JH. Extensive congenital malformations in two siblings: maternal pre-diabetes or a new syndrome? Acta Paediatr Scand. 1981;70:767–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lewin SO, Opitz JM. Fibular a/hypoplasia: review and documentation of the fibular developmental field. Am J Med Genet. 1986;25(suppl 2):215–38.

    Article  Google Scholar 

  23. Ellis IH, Yale C, Thomas R, et al. Three sibs with microcephaly, congenital heart disease, lung segmentation defects and unilateral absent kidney: a new recessive multiple congenital anomaly (MCA) syndrome? Clin Dysmorphol. 1996;5:129–34.

    Article  CAS  PubMed  Google Scholar 

  24. Frank V, Habbig S, Bartram MP, et al. Variants in NEK8 link multiple organ dysplasia with altered hippo signaling and increased c-MYC expression. Hum Mol Genet. 2013;22:2177–85.

    Article  CAS  PubMed  Google Scholar 

  25. Lindsay EA. Chromosome microdeletions: dissecting del22q11 syndrome. Nat Rev Genet. 2001;2:858–68.

    Article  CAS  PubMed  Google Scholar 

  26. Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001;410:97–101.

    Article  CAS  PubMed  Google Scholar 

  27. Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001;104:619–29.

    Article  CAS  PubMed  Google Scholar 

  28. Garg V, Yamagishi C, Hu T, et al. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol. 2001;235:62–73.

    Article  CAS  PubMed  Google Scholar 

  29. Yamagishi H, Maeda J, Hu T, et al. Tbx1 is regulated by tissue-specific forkhead proteins through a common sonic hedgehog-responsive enhancer. Genes Dev. 2003;17:269–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu H, Morishima M, Wylie JN, et al. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development. 2004;131:3217–27.

    Article  CAS  PubMed  Google Scholar 

  31. Maeda J, Yamagishi H, McAnally J, et al. Tbx1 is regulated by forkhead proteins in the secondary heart field. Dev Dyn. 2006;235:701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362:1366–73.

    Article  CAS  PubMed  Google Scholar 

  33. Huang RT, Wang J, Xue S, et al. TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. Int J Med Sci. 2017;14:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brewer A, Pizzey J. GATA factors in vertebrate heart development and disease. Expert Rev Mol Med. 2006;8:1–20.

    Article  PubMed  Google Scholar 

  35. Kodo K, Nishizawa T, Furutani M, et al. GATA6 variants cause human cardiac outflow tract defects by disrupting semaphoring-plexin signaling. Proc Natl Acad Sci U S A. 2009;106:13933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ta-Shma A, Pierri CL, Stepensky P, et al. Isolated truncus arteriosus associated with a variant in the plexin-D1 gene. Am J Med Genet A. 2013;161A:3115–20.

    Article  PubMed  Google Scholar 

  37. Kodo K, Shibata S, Miyagawa-Tomita S, et al. Regulation of Sema3c and the interaction between cardiac neural crest and second heart field during outflow tract development. Sci Rep. 2017;7:6771.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kodo K, Nishizawa T, Furutani M, et al. Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects. Circ J. 2012;76:1703–11.

    Article  CAS  PubMed  Google Scholar 

  39. Maitra M, Koenig SN, Srivastava D, et al. Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res. 2010;68:281–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin X, Huo Z, Liu X, et al. A novel GATA6 variant in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010;55:662–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Ji W, Wang J, et al. Identification of two novel GATA6 mutations in patients with nonsyndromic conotruncal heart defects. Mol Med Rep. 2014;10:743–8.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang E, Hong N, Chen S, et al. Targeted sequencing identifies novel GATA6 variants in a large cohort of patients with conotruncal heart defects. Gene. 2018;641:341–8.

    Article  CAS  PubMed  Google Scholar 

  43. Raghuram N, Marwaha A, Greer MC, et al. Congenital hypothyroidism, cardiac defects, and pancreatic agenesis in an infant with GATA6 mutation. Am J Med Genet A. 2020;182:1496–9.

    Article  CAS  PubMed  Google Scholar 

  44. Allen HL, Flanagan SE, Shaw-Smith C, et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet. 2011;44:20–2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yorifuji T, Kawakita R, Hosokawa Y, et al. Dominantly inherited diabetes mellitus caused by GATA6 haploinsufficiency: variable intrafamilial presentation. J Med Genet. 2012;49:642–3.

    Article  CAS  PubMed  Google Scholar 

  46. Stanescu DE, Hughes N, Patel P, et al. A novel variant in GATA6 causes pancreatic agenesis. Pediatr Diabetes. 2015;16:67–70.

    Article  CAS  PubMed  Google Scholar 

  47. Škorić-Milosavljević D, Tjong FVY, Barc J, et al. GATA6 mutations: characterization of two novel patients and a comprehensive overview of the GATA6 genotypic and phenotypic spectrum. Am J Med Genet A. 2019;179:1836–45.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Garg V, Kathiriya IS, Barnes R, et al. GATA4 variants cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.

    Article  CAS  PubMed  Google Scholar 

  49. Nemer G, Fadlalah F, Usta J, et al. A novel variant in the GATA4 gene in patients with tetralogy of Fallot. Hum Mutat. 2006;27:293–4.

    Article  PubMed  Google Scholar 

  50. Lien CL, Wu C, Mercer B, et al. Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development. 1999;126:75–84.

    Article  CAS  PubMed  Google Scholar 

  51. Durocher D, Charron F, Warren R, et al. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 1997;16:5687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Charron F, Paradis P, Bronchain O, et al. Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol Cell Biol. 1999;19:4355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xin M, Davis CA, Molkentin JD, et al. A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci U S A. 2006;103:11189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shiojima I, Komuro I, Inazawa J, et al. Assignment of cardiac homeobox gene CSX to human chromosome 5q34. Genomics. 1995;27:204–6.

    Article  CAS  PubMed  Google Scholar 

  55. Komuro I, Izumo S. Csx a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci U S A. 1993;90:8145–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Newman CS, Krieg PA. Tinman-related genes expressed during heart development in Xenopus. Dev Genet. 1998;22:230–8.

    Article  CAS  PubMed  Google Scholar 

  57. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by variants in the transcription factor NKX2-5. Science. 1998;281:108–11.

    Article  CAS  PubMed  Google Scholar 

  58. McElhinney DB, Geiger E, Blinder J, et al. NKX2.5 variants in patients with congenital heart disease. J Am Coll Cardiol. 2003;42:1650–5.

    Article  CAS  PubMed  Google Scholar 

  59. Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Variants in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104:1567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akçaboy MI, Cengiz FB, Inceoğlu B, et al. The effect of p.Arg25Cys alteration in NKX2-5 on conotruncal heart anomalies: variant or polymorphism? Pediatr Cardiol. 2008;29:126–9.

    Article  PubMed  Google Scholar 

  61. Heathcote K, Braybrook C, Abushaban L, et al. Common arterial trunk associated with a homeodomain variant of NKX2.6. Hum Mol Genet. 2005;14:585–93.

    Article  CAS  PubMed  Google Scholar 

  62. Ta-Shma A, El-Lahham N, Edvardson S, et al. Conotruncal malformations and absent thymus due to a deleterious NKX2-6 variant. J Med Genet. 2014;51:268–70.

    Article  CAS  PubMed  Google Scholar 

  63. Shaheen R, Al Hashem A, Alghamdi MH, et al. Positional mapping of PRKD1, NRP1 and PRDM1 as novel candidate disease genes in truncus arteriosus. J Med Genet. 2015;52:322–9.

    Article  CAS  PubMed  Google Scholar 

  64. Ta-Shma A, Khan TN, Vivante A, et al. Mutations in TMEM260 cause a pediatric neurodevelopmental, cardiac, and renal syndrome. Am J Hum Genet. 2017;100:666–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pagnamenta AT, Jackson A, Perveen R, et al. Biallelic TMEM260 variants cause truncus arteriosus, with or without renal defects. Clin Genet Online ahead of print. 2021;101(1):127–33.

    Google Scholar 

  66. Inoue T, Takase R, Uchida K, et al. The c.1617del variant of TMEM260 is identified as the most frequent single gene determinant for Japanese patients with a specific type of congenital heart disease. J Hum Genet. 2024; in press.

    Google Scholar 

  67. Jin SC, Homsy J, Zaidi S, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49:1593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yamagishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamagishi, H. (2024). Human Genetics of Truncus Arteriosus. In: Rickert-Sperling, S., Kelly, R.G., Haas, N. (eds) Congenital Heart Diseases: The Broken Heart. Advances in Experimental Medicine and Biology, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-031-44087-8_51

Download citation

Publish with us

Policies and ethics