Skip to main content

The Genetics of Human Congenital Coronary Vascular Anomalies

  • Chapter
  • First Online:
Congenital Heart Diseases: The Broken Heart

Abstract

The genetics of human congenital coronary vascular anomalies (hCCVA) remains largely underresearched. This is surprising, because although coronary vascular defects represent a relatively small proportion of human congenital heart disease (CHD), hCCVAs are clinically significant conditions. Indeed, hCCVA frequently associate to other congenital cardiac structural defects and may even result in sudden cardiac death in the adult. In this brief chapter, we will attempt to summarize our current knowledge on the topic, also proposing a rationale for the development of novel approaches to the genetics of hCCVA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laureti J, Singh K, Blankenship J. Anomalous coronary arteries : a familial clustering. Clin Cardiol. 2005;490:488–90.

    Article  Google Scholar 

  2. Brothers JA, Stephens P, Gaynor JW, et al. Anomalous aortic origin of a coronary artery with an interarterial course: should family screening be routine? J Am Coll Cardiol. 2008;51:2062–4.

    Article  PubMed  Google Scholar 

  3. Cheitlin MD. Finding asymptomatic people with a coronary artery arising from the wrong sinus of valsalva: consequences arising from knowing the anomaly to be familial. J Am Coll Cardiol. 2008;51:2065–7.

    Article  PubMed  Google Scholar 

  4. Tomanek R. Coronary vasculature. Development, structure-function, and adaptations. New York: Springer Science; 2013.

    Book  Google Scholar 

  5. Angelini P. Normal and anomalous coronary arteries in humans. In: Angelini P, editor. Coronary artery anomalies. Philadelphia: Lippincott, Williams and Wilkins; 1999. p. 27–150.

    Google Scholar 

  6. Maron B, Doerer J, Haas T, Tierney DM, Mueller F. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119:1085–92.

    Article  PubMed  Google Scholar 

  7. Rigatelli G, Docali G, Rossi P, et al. Validation of a clinical-significance-based classification of coronary artery anomalies. Angiology. 2005;56:25–34.

    Article  PubMed  Google Scholar 

  8. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115:1296–305.

    Article  PubMed  Google Scholar 

  9. Moodie D. Adult congenital heart disease. Curr Opin Cardiol. 1994;9:137–42.

    Article  CAS  PubMed  Google Scholar 

  10. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–22.

    Article  CAS  PubMed  Google Scholar 

  11. Cordell HJ, Bentham J, Topf A, et al. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat Genet. 2013;45:822–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomita-Mitchell A, Mahnke DK, Struble CA, et al. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012;44:518–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hauser M. Congenital anomalies of the coronary arteries. Heart. 2005;91:1240–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roberts R. Genetics of coronary artery disease: an update. Methodist Debakey Cardiovasc J. 2014;10:7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kathiresan S, Voight BF, Purcell S, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–41.

    Article  CAS  PubMed  Google Scholar 

  16. Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith CL, Baek ST, Sung CY, Tallquist MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res. 2011;108:e15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Acharya A, Baek ST, Huang G, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139:2139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iyer D, Zhao Q, Wirka R, et al. Coronary artery disease genes SMAD3 and TCF21 promote opposing interactive genetic programs that regulate smooth muscle cell differentiation and disease risk. PLoS Genet. 2018;14:e1007681.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wirka RC, Wagh D, Paik DT, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25:1280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nagao M, Lyu Q, Zhao Q, et al. Coronary disease-associated gene TCF21 inhibits smooth muscle cell differentiation by blocking the myocardin-serum response factor pathway. Circ Res. 2020;126:517–29.

    Article  CAS  PubMed  Google Scholar 

  22. Gould DB, Phalan FC, Breedveld GJ, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308:1167–71.

    Article  CAS  PubMed  Google Scholar 

  23. Pierpont ME, Brueckner M, Chung WK, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018;138:e653–711.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Busè M, Cuttaia HC, Palazzo D, et al. Expanding the phenotype of reciprocal 1q21.1 deletions and duplications: a case series. Ital. J Pediatr. 2017;43:61.

    Google Scholar 

  25. Samani N, Erdmann J, Hall A, et al. Genome wide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Escot S, Blavet C, Härtle S, et al. Misregulation of SDF1-CXCR4 signaling impairs early cardiac neural crest cell migration leading to conotruncal defects. Circ Res. 2013;113:505–16.

    Article  CAS  PubMed  Google Scholar 

  27. Théveniau-Ruissy M, Dandonneau M, Mesbah K, et al. The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res. 2008;103:142–8.

    Article  PubMed  Google Scholar 

  28. Lambrechts D, Storkebaum E, Morimoto M, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet. 2003;34:383–94.

    Article  CAS  PubMed  Google Scholar 

  29. Stalmans I, Lambrechts D, De Smet F, et al. VEGF: a modifier of the del22q11 (DiGeorge) syndrome? Nat Med. 2003;9:173–82.

    Article  CAS  PubMed  Google Scholar 

  30. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Biol Dev Biol. 1995;11:73–91.

    Article  CAS  Google Scholar 

  31. Wu B, Zhang Z, Lui W, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151:1083–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Napoli C, Armiento FPD, Mancini FP, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. J Clin Invest. 1997;100:2680–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Velican C, Velican D. Coronary arteries in children up to the age of ten years II. Intimal thickening and its role in atherosclerotic involvement. Med Interne. 1976;14:17–24.

    CAS  PubMed  Google Scholar 

  34. Napoli C, Witztum J, de Nigris F, et al. Intracraneal arteries of human fetuses are more resistant to hypercholesterolemia-induced fatty streak formation than extracranial arteries. Circulation. 1999;99:2003–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Pérez-Pomares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garrido, A.O., Picazo, B., Guadix, J.A., Ruiz-Villalba, A., Pérez-Pomares, J.M. (2024). The Genetics of Human Congenital Coronary Vascular Anomalies. In: Rickert-Sperling, S., Kelly, R.G., Haas, N. (eds) Congenital Heart Diseases: The Broken Heart. Advances in Experimental Medicine and Biology, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-031-44087-8_48

Download citation

Publish with us

Policies and ethics