Skip to main content

Size of the Solar System

  • Chapter
  • First Online:
Scientific Debates in Space Science

Part of the book series: Springer Praxis Books ((ASTRONOMY))

  • 295 Accesses

Abstract

The heliosphere is defined as the region of space in which the plasma and magnetic fields from the Sun are largely separate from the local interstellar medium. The boundary of the heliosphere is called the heliopause, and a plasma structure within the heliosphere, called the termination shock, marks the surface where the supersonic solar wind becomes subsonic. Since the 1950s, scientists have speculated about the distances from the Sun of these surfaces. Several different scientific approaches were used to justify the guesses, which varied widely. After decades of flight, and by making use of gravitational assists from Jupiter and Saturn, the Voyager spacecraft crossed the termination shock and the heliopause. The distances to these surfaces were larger than generally predicted, and the overall structure of the heliosphere remains a very active area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 64.99
Price excludes VAT (USA)
Hardcover Book
USD 84.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axford, W. I. (1965). The modulation of galactic cosmic rays in the interplanetary medium. Planetary and Space Science, 13(2), 115–130.

    Article  ADS  Google Scholar 

  • Axford, W. I. (1972). The interaction of the solar wind with the interstellar medium. NASA Special Publication, 308, 609.

    ADS  Google Scholar 

  • Axford, W. I., & Newman, R. C. (1965). The effect of cosmic ray friction on the solar wind. In International cosmic ray conference (Vol. 1, p. 173).

    Google Scholar 

  • Axford, W. I., Dessler, A. J., & Gottlieb, B. (1963). Termination of solar wind and solar magnetic field. The Astrophysical Journal, 137, 1268.

    Article  ADS  Google Scholar 

  • Belton, M. J. (1965). Some characteristics of type II comet tails and the problem of the distant comets. The Astronomical Journal, 70, 451.

    Article  ADS  Google Scholar 

  • Belton, M. J., & Brandt, J. C. (1966). Interplanetary gas. XII. A catalogue of comet-tail orientations. The Astrophysical Journal Supplement Series, 13, 125.

    Article  ADS  Google Scholar 

  • Bertaux, J. L., & Blamont, J. C. (1971). Evidence for a source of an extraterrestrial hydrogen Lyman-alpha emission. Astronomy and Astrophysics, 11, 200.

    ADS  Google Scholar 

  • Biermann, L. (1951). Kometenschweife und solare Korpuskularstrahlung. Zeitschrift fur Astrophysik, 29, 274.

    ADS  Google Scholar 

  • Blum, P. W., & Fahr, H. J. (1970). Interaction between interstellar hydrogen and the solar wind. Astronomy and Astrophysics, 4, 280.

    ADS  Google Scholar 

  • Brandt, J. C. (1967). Interplanetary gas. XIII. Gross plasma velocities from the orientations of ionic comet tails. The Astrophysical Journal, 147, 201.

    Article  ADS  Google Scholar 

  • Brandt, J. C., & Michie, R. W. (1962). Semiempirical model of the interplanetary medium. Physical Review Letters, 8(5), 195.

    Article  ADS  Google Scholar 

  • Burke, B. F., & Franklin, K. L. (1955). Observations of a variable radio source associated with the planet Jupiter. Journal of Geophysical Research, 60, 213.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Ness, N. F., Acuna, M. H., Lepping, R. P., Connerney, J. E. P., Stone, E. C., & McDonald, F. B. (2005). Crossing the termination shock into the heliosheath: Magnetic fields. Science, 309(5743), 2027–2029. https://doi.org/10.1126/science.1117542

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Ness, N. F., & Stone, E. C. (2013). Magnetic field observations as Voyager 1 entered the heliosheath depletion region. Science, 341(6142), 147–150.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Ness, N. F., Berdichevsky, D. B., Park, J., Jian, L. K., Szabo, A., Stone, E. C., & Richardson, J. D. (2019). Magnetic field and particle measurements made by Voyager 2 at and near the heliopause. Nature Astronomy, 3(11), 1007–1012. https://doi.org/10.1038/s41550-019-0920-y

    Article  ADS  Google Scholar 

  • Cahill, L. J., & Amazeen, P. G. (1963). The boundary of the geomagnetic field. Journal of Geophysical Research, 68(7), 1835–1843.

    Article  ADS  Google Scholar 

  • Chamberlain, J. W. (1961). Interplanetary gas. III. a hydrodynamical model of the corona. The Astrophysical Journal, 133, 675.

    Article  ADS  MathSciNet  Google Scholar 

  • Cummings, A. C., Stone, E. C., & Webber, W. R. (1987). Latitudinal and radial gradients of anomalous and galactic cosmic rays in the outer heliosphere. Geophysical Research Letters, 14(3), 174–177.

    Article  ADS  Google Scholar 

  • Cummings, A. C., Stone, E. C., Richardson, J. D., Heikkila, B. C., Lal, N., & Kota, J. (2021). No stagnation region before the heliopause at Voyager 1? Inferences from new Voyager 2 results. The Astrophysical Journal, 906, 126.

    Article  ADS  Google Scholar 

  • Davis, L., Jr. (1955). Interplanetary magnetic fields and cosmic rays. Physical Review, 100(5), 1440.

    Article  ADS  Google Scholar 

  • Davis, L., Jr. (1962). The effect of solar disturbances and the galactic magnetic field on the interplanetary gas. Journal of the Physical Society of Japan Supplement, 17, 543.

    Google Scholar 

  • Decker, R. B., Krimigis, S. M., Roelof, E. C., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C., & Lanzerotti, L. J. (2005). Voyager 1 in the foreshock, termination shock, and heliosheath. Science, 309(5743), 2020–2024.

    Article  ADS  Google Scholar 

  • Decker, R. B., Krimigis, S. M., Roelof, E. C., & Hill, M. E. (2012). No meridional plasma flow in the heliosheath transition region. Nature, 489, 124–127.

    Article  ADS  Google Scholar 

  • Dessler, A. J. (1967). Solar wind and interplanetary magnetic field. Reviews of Geophysics, 5(1), 1–41.

    Article  ADS  Google Scholar 

  • Dialynas, K., Krimigis, S. M., Decker, R. B., & Hill, M. E. (2021). Ions measured by Voyager 1 outside the heliopause to ~28 au and implications thereof. The Astrophysical Journal, 917.

    Google Scholar 

  • Dialynas, K., Krimigis, S. M., Decker, R. B., Hill, M., Mitchell, D. G., Hsieh, K. C., Hilchenbach, M., & Czechowski. (2022). The structure of the global heliosphere as seen by in-situ ions from the Voyagers and remotely sensed ENAs from Cassini. Space Science Reviews, 218.

    Google Scholar 

  • Fillius, W. (1989). Cosmic ray gradients in the heliosphere. Advances in Space Research, 9(4), 209–219.

    Article  ADS  Google Scholar 

  • Flandro, G. A. (1966). Fast reconnaissance missions to the outer solar system utilizing energy derived from the gravitational field of Jupiter. Astronautica Acta, 12(4), 329–337.

    Google Scholar 

  • Galli, A., Wurz, P., Schwadron, N. A., Kucharek, H., Mobius, E., Bzowski, M., Sokol, J. M., Kubiak, M. A., Fuselier, S. A., Funsten, H. O., & McComas, D. J. (2017). The downwind hemisphere of the heliosphere: Eight years of IBEX-Lo observations. The Astrophysical Journal, 815, 2.

    Article  ADS  Google Scholar 

  • Galli, A., Baliukin, I. I., Bzowski, M., Izmodenov, V. V., Kornbleuth, M., Kurcharek, H., Mobius, E., Opher, M., Reisenfeld, D., Schwadron, N. A., & Swaczyna, P. (2022). The heliosphere and local interstellar medium from neutral atom observations at energies below 10 kev. Space Science Reviews, 218, 31.

    Article  ADS  Google Scholar 

  • Gloeckler, G., & Jokipii, J. R. (1967). Solar modulation and the energy density of galactic cosmic rays. The Astrophysical Journal, 148, L41.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., & Kurth, W. S. (2005). Electron plasma oscillations upstream of the solar wind termination shock. Science, 309(5743), 2025–2027.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., & Kurth, W. S. (2008). Intense plasma waves at and near the solar wind termination shock. Nature, 454(7200), 78–80.

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Kurth, W. S., Allendorf, S. C., & Poynter, R. L. (1993). Radio emissions from the heliopause triggered by an interplanetary shock. Science, 262, 199–203.

    Article  ADS  Google Scholar 

  • Holzer, T. E. (1972). Interaction of the solar wind with the neutral component of the interstellar gas. Journal of Geophysical Research, 77(28), 5407–5431.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J. (1968). Interplanetary neutral hydrogen and the radius of the heliosphere. Planetary and Space Science, 16(6), 783–793.

    Article  ADS  Google Scholar 

  • Kiepenheuer, K. O. (1953). Solar activity. In G. P. Kuiper (Ed.), The Sun. University of Chicago Press.

    Google Scholar 

  • Kleimann, J., Dialynas, K., Fraternale, F., Galli, A., Heerrikhuisen, J., Izmodenov, V., Kornbleuth, M., Opher, M., & Pogorelov, N. (2022). The structure of the large-scale heliosphere as seen by current models. Space Science Reviews, 281.

    Google Scholar 

  • Krimigis, S. M., Decker, R. B., Roelof, E. C., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C., & Lanzerotti, L. J. (2013). Search for the exit: Voyager 1 at heliosphere’s border with the galaxy. Science, 341(6142), 144–147. https://doi.org/10.1126/science.1235721

    Article  ADS  Google Scholar 

  • Krimigis, S. M., Decker, R. B., Roelof, E. C., Hill, M. E., Bostrom, C. O., Dialynas, K., Gloeckler, G., Hamilton, D. C., Keath, E. P., & Lanzerotti, L. J. (2019). Energetic charged particle measurements from Voyager 2 at the heliopause and beyond. Nature Astronomy, 3(2019), 997–1006.

    Article  ADS  Google Scholar 

  • Kurth, W. S., Gurnett, D. A., Scarf, F. L., & Poynter, R. L. (1984). Detection of a radio emission at 3 kHz in the outer heliosphere. Nature, 312, 27–31.

    Article  ADS  Google Scholar 

  • Lallement, R. (2001). The interaction of the heliosphere with the interstellar medium. The Century of Space Science, 1191–1216.

    Google Scholar 

  • Lanzerotti, L. J., & Schulz, M. (1969). Interaction between the boundary of the heliosphere and the magnetosphere of Jupiter. Nature, 222, 1054–1055.

    Article  ADS  Google Scholar 

  • McComas, D. J., Allegrini, F., Boshsler, P., Bzowski, M., Christian, E. R., Crew, G. B., DeMajistre, R., Fahr, H., Fichtner, H., et al. (2009). Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX). Science, 326, 959–962.

    Article  ADS  Google Scholar 

  • McComas, D. J., Christian, E. R., Schwadron, N. A., et al. (2018). Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission. Space Science Reviews, 214, 116.

    Article  ADS  Google Scholar 

  • McComas, D. J., Bzowski, M., Dayeh, M. A., DeMajistre, R., Funston, H. O., et al. (2020). Solar cycle of imaging the global heliosphere: Interstellar Boundary Explorer (IBEX) observations from 2009-2019. Astrophysical Journal Supplement Series, 248, 26.

    Article  ADS  Google Scholar 

  • McDonough, T. R., & Brice, N. M. (1971). The termination of the solar wind. Icarus, 15(3), 505–510.

    Article  ADS  Google Scholar 

  • McNutt, R. L., Jr., Wimmer-Schweingruber, R. F., Gruntman, M., Krimigis, S. M., Roelof, E. C., Brandt, P. C., et al. (2022). Interstellar probe–Destination: Universe! Acta Astronautica, 196, 13–28.

    Article  ADS  Google Scholar 

  • Meyer, P., Parker, E. N., & Simpson, J. A. (1956). Solar cosmic rays of February, 1956 and their propagation through interplanetary space. Physical Review, 104(3), 768.

    Article  ADS  Google Scholar 

  • Morton, D. C., & Purcell, J. D. (1962). Observations of the extreme ultraviolet radiation in the night sky using an atomic hydrogen filter. Planetary and Space Science, 9(8), 455–458.

    Article  ADS  Google Scholar 

  • Mostafavi, P., Burlaga, L. F., Cairns, I. H., Fuselier, S. A., Fraternale, F., Gurnett, D. A., Kim, T. K., Kurth, W. S., Pogorelov, N. V., Provornikova, E., Richardson, J. D., Turner, D. L., & Zank, G. P. (2022). Shocks in the very local interstellar medium. Space Science Reviews, 218.

    Google Scholar 

  • Münch, G., & Unsöld, A. (1962). Interstellar Gas Near the Sun. The Astrophysical Journal, 135, 711.

    Article  ADS  Google Scholar 

  • Ness, N. F. (1968). Observed properties of the interplanetary plasma. Annual Review of Astronomy and Astrophysics, 6(1), 79–114.

    Article  ADS  Google Scholar 

  • O’Gallagher, J. J. (1972). Observations of the radial gradient of galactic cosmic radiation over a solar cycle. Reviews of Geophysics, 10(3), 821–835.

    Article  ADS  Google Scholar 

  • O’Gallagher, J. J. (1967). Cosmic-ray radial density gradient and its rigidity dependence observed at solar minimum on Mariner IV. The Astrophysical Journal, 150, 675.

    Article  ADS  Google Scholar 

  • O’Gallagher, J. J., & Simpson, J. A. (1967). The heliocentric intensity gradients of cosmic-ray protons and helium during minimum solar modulation. The Astrophysical Journal, 147, 819.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1958). Cosmic-ray modulation by solar wind. Physical Review, 110(6), 1445.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1960). The hydrodynamic theory of solar corpuscular radiation and stellar winds. The Astrophysical Journal, 132, 821.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1961). The stellar-wind regions. The Astrophysical Journal, 134, 20.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1963). Interplanetary dynamical processes. Interscience.

    Google Scholar 

  • Parker, E. N. (1966). The dynamical state of the interstellar gas and field. Astrophysical Journal, 145, 811.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1969). Theoretical studies of the solar wind phenomenon. Space Science Reviews, 9(3), 325–360.

    Article  ADS  Google Scholar 

  • Patterson, T. N. L., Johnson, F. S., & Hanson, W. B. (1963). The distribution of interplanetary hydrogen. Planetary and Space Science, 11(7), 767–778.

    Article  ADS  Google Scholar 

  • Richardson, J. D., Paularena, K. I., Lazarus, A. J., & Belcher, J. W. (1995). Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophysical Research Letters, 22(4), 325–328.

    Article  ADS  Google Scholar 

  • Richardson, J. D., Burlaga, L. F., Elliot, H., Kurth, W. S., Liu, Y. D., & von Steiger, R. (2022). Observations of the outer heliosphere, heliosheath, and the interstellar medium. Space Science Reviews, 218, 35.

    Article  ADS  Google Scholar 

  • Schmidt, M. (1963). The rate of star formation. II. The rate of formation of stars of different mass. The Astrophysical Journal, 137, 758.

    Article  ADS  Google Scholar 

  • Shklovsky, I. S. (1959). On hydrogen emission in the night glow. Planetary and Space Science, 1(1), 63–65.

    Article  ADS  Google Scholar 

  • Smith, A. G., & Carr, T. D. (1964). Radio exploration of the planetary system (pp. 89–91). D. Van Nostrand.

    Google Scholar 

  • Stone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N., & Webber, W. R. (2005). Voyager 1 explores the termination shock region and the heliosheath beyond. Science, 309(5743), 2017–2020. https://doi.org/10.1126/science.1117684

    Article  ADS  Google Scholar 

  • Thomas, R. N. (1960). Aerodynamic phenomena in stellar atmospheres: Proceedings of the International Astronomical Union Symposium no. 12 on Cosmical Gas Dynamics. IAUS, 12.

    Google Scholar 

  • Thomas, G. E., & Krassa, R. F. (1971). OGO 5 measurements of the Lyman alpha sky background. Astronomy and Astrophysics, 11, 218.

    ADS  Google Scholar 

  • Unsöld, A., & Chapman, S. (1949). Optical and radiofrequency absorption by solar corpuscular bursts. The Observatory, 69, 219–221.

    ADS  Google Scholar 

  • Westlake, J. H., Mitchell, D. J., Gkioulidou, M., Dialynas, K., Cohen, I. J., Krimigis, S., Decker, R. B., et al. (2020). Heliospheric maps from Cassini INCA early in the cruise to Saturn. Astrophysical Journal Letters, 902, L45.

    Article  ADS  Google Scholar 

  • Williams, R. E. (1965). The size of a solar H II region. The Astrophysical Journal, 142, 314.

    Article  ADS  Google Scholar 

  • Zank, G. (2015). Faltering steps into the galaxy: The boundary regions of the heliosphere. Annual Reviews Astronomy Astrophysics, 53, 449–500.

    Article  ADS  Google Scholar 

  • Zank, G. P., Sterken, V., Giacaloni, J., Möbius, E., von Steiger, R., Stone, E. C., Krimigis, S. M., Richardson, J. D., Linsky, J., Izmodenov, V., & Heber, B. (2022). The early history of heliospheric science and the spacecraft that made it possible. Space Science Reviews, 218, 34.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren David Cummings .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cummings, W.D., Lanzerotti, L.J. (2023). Size of the Solar System. In: Scientific Debates in Space Science. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-031-41598-2_8

Download citation

Publish with us

Policies and ethics