Skip to main content

Long-Term Variability of North Atlantic Storm Tracks: Possible Influence of Solar Activity and Cosmic Ray Variations

  • Conference paper
  • First Online:
Problems of Geocosmos—2022 (ICS 2022)

Abstract

In this work we study long-term variability of the main directions of extratropical cyclone movement (storm tracks) in the North Atlantic basing on the data of MSLP (Mean Sea Level Pressure) archives from Climatic Research Unit, UK (1873–2000) and NCEP/DOE AMIP-II Reanalysis (1979–2021). It was revealed that, in the period of intensive cyclogenesis (October–March), the storm track latitudes in the longitudinal range from 60 to 10 ºW are characterized by noticeable variations with the periods of ~80–90, ~40–45 and  ~22–23 years, which indicates their possible association with solar activity and related phenomena. Cyclone trajectories were found to be shifted to the north at the minimum of the secular Gleissberg cycle and to the south at its maximum, with the peak-to-peak amplitude reaching  ~5º. On the bidecadal time scale, cyclone trajectories lie  ~1−2º further north in even solar cycles. The detected changes of cyclone trajectories provide evidence for long-term variations in intensity of the stratospheric polar vortex, with possible factors of the vortex intensification being ionization changes associated with galactic cosmic ray variations and geomagnetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, G.M., John, J.I.: Solar cycle influences on tropospheric circulation. Journal of Atmospheric and Terrestrial Physics 41, 43–52 (1979).

    Article  ADS  Google Scholar 

  2. Tinsley, B.A.: The solar cycle and the QBO influences on the latitude of storm tracks in the North Atlantic. Geophysical Research Letters 15(5), 409–412 (1988).

    Article  ADS  Google Scholar 

  3. Vorobjev, V.I.: Synoptic meteorology. Hydrometeoizdat, Leningrad (1991).

    Google Scholar 

  4. Climatic Research Unit, https://crudata.uea.ac.uk/cru/data/pressure, last accessed 2004/08/08.

  5. NOAA PSL, https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.surface.html, last accessed 2022/01/26.

  6. Jenkins, G., Watts, D.: Spectral analysis and its application. Holden-Day, San Fransisko (1968).

    MATH  Google Scholar 

  7. WDC-SILSO, Royal Observatory of Belgium, http://www.sidc.be/silso/datafiles, last accessed 2018/05/16.

  8. Beer, J., Blinov, A., Bonani, G. et al. Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166 (1990).

    Article  ADS  Google Scholar 

  9. Alavi, A.S., Jenkins, G.M.: An example of digital filtering. Applied Statistics 14, 70–74 (1965).

    Article  Google Scholar 

  10. Obridko, V.N., Nagovitsyn, Yu.A.: Solar activity, cyclicity and prediction methods. BBM, St. Petersburg (2017).

    Google Scholar 

  11. Jelbring, H.: Analysis of sunspot cycle phase variations–based on D. Justin-Schove’s proxy data. Journal of Coastal Research. Special Issue 17, 363−369 (1995).

    Google Scholar 

  12. Stohkov, Y.I., Okhlopkov, V.P, Svirzhevsky, N.S.: Cosmic ray fluxes in present and past times. Solar Physics 224, 323–333 (2004).

    Article  ADS  Google Scholar 

  13. Thomas, S.R., Owens, M.J., Lockwood, M.: The 22-year Hale cycle in cosmic ray flux – evidence for direct heliospheric modulation. Solar Physics 289, 407–421 (2014).

    Article  ADS  Google Scholar 

  14. Stozhkov, Y.I.; Svirzhevsky, N.S.; Bazilevskaya, G.A.; Kvashnin, A.N.; Makhmutov, V.S.; Svirzhevskaya, A.K.: Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 44, 1124–1137 (2009).

    Article  ADS  Google Scholar 

  15. Rusch, D.W., Gerard, J.-C., Solomon, S., Crutzen, P.J., Reid, G.C.: The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere I. Odd nitrogen. Planetary Space Science 29, 767–774 (1981).

    Article  ADS  Google Scholar 

  16. Solomon, S., Rusch, D.W., Gerard, J.-C., Reid, G.C., Crutzen, P.J.: The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planetary Space Science 29, 885–893 (1981).

    Article  ADS  Google Scholar 

  17. Veretenenko, S.: Effects of Solar Proton Events of January 2005 on the middle atmosphere dynamics in the Northern hemisphere. Advances in Space Research 68, 1814–1824 (2021).

    Article  ADS  Google Scholar 

  18. Tinsley, B.A.: The global atmospheric electric circuit and its effects on cloud microphysics. Rep. Progr. Phys. 71, 066801 (2008).

    Article  ADS  Google Scholar 

  19. Tinsley, B.A.: Uncertainties in evaluating global electric circuit interactions with atmospheric clouds and aerosols, and consequences for radiation and dynamics. J. Geophys. Res. 127, e2021JD035954 (2022).

    Google Scholar 

  20. Pudovkin, M.I.; Veretenenko, S.V.: Cloudiness decreases associated with Forbush-decreases of galactic cosmic rays. J. Atmos. Terr. Phys. 57, 1349–1355 (1995).

    Article  ADS  Google Scholar 

  21. Svensmark, .J., Enghoff, M. B., Shaviv, N. J., Svensmark, H.: The response of clouds and aerosols to cosmic ray decreases. J. Geophys. Res. 121, 8152–8181 (2016).

    Google Scholar 

  22. Matsumoto, H., Svensmark, H., Enghoff, M.B.: Effects of Forbush decreases on clouds determined from PATMOS-x. J. Atmos. Sol.–Terr. Phys. 230, 105845 (2022).

    Google Scholar 

  23. NOAA PSL, https://www.psl.noaa.gov/data/gridded/data.olrcdr.interp.html, last accessed 2023/01/25.

  24. Veretenenko, S.V, Dergachev, V.A., Dmitriyev, P.B.: Solar rhythms in the characteristics of the Arctic frontal zone in the North Atlantic. Adv. Space Res. 45, 391–397(2010).

    Article  ADS  Google Scholar 

  25. Cliver, E.V., Boriakoff, V., Bounar, K.H.: The 22-year cycle of geomagnetic and solar wind activity. Journal of Geophysical Research 101(A12), 27091–27109 (1996).

    Article  ADS  Google Scholar 

  26. World Data Center for Solar-Terrestrial Physics, Moscow, Russia, http://www.wdcb.ru/stp/geomag/geomagn_aa_Aa_ind.html, last accessed 2022/02/16.

  27. Baumgaertner, A.J.G., Seppälä, A., Jöckel, P., Clilverd, M.A.: Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index. Atmospheric Chemistry and Physics 11, 4521–4531 (2011).

    Article  ADS  Google Scholar 

  28. Rozanov, E., Calisto, M., Egorova, T., Peter, T., Schmutz, W.: Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surveys in Geophysics 33, 483–501 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MSLP data were provided by Climatic Research Unit, UK, at https://crudata.uea.ac.uk/ and NOAA/OAR/ESLR PSL, Boulder, Colorado, USA, at https://psl.noaa.gov/. Cosmic ray fluxes in the stratosphere were provided by Lebedev Physical Institute, at https://sites.lebedev.ru/ru/sites/DNS_FIAN.html. We thank the referees for carefully reading the paper and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Veretenenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Veretenenko, S., Dmitriev, P., Dergachev, V. (2023). Long-Term Variability of North Atlantic Storm Tracks: Possible Influence of Solar Activity and Cosmic Ray Variations. In: Kosterov, A., Lyskova, E., Mironova, I., Apatenkov, S., Baranov, S. (eds) Problems of Geocosmos—2022. ICS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-40728-4_30

Download citation

Publish with us

Policies and ethics