Skip to main content

Magnetic Barrier in Front of Exoplanets Interacting with Stellar Wind

  • Conference paper
  • First Online:
Problems of Geocosmos—2022 (ICS 2022)

Abstract

The interaction between the magnetized stellar wind plasma and the hydrodynamic flow from the upper atmosphere of a non-magnetic exoplanet is studied. The recently discovered warm Neptune TOI-421c is considered as an example of such an interaction. The obstacle boundary is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere. Extreme ultraviolet stellar radiation drives a hydrodynamic supersonic outflow of hydrogen atoms. Neutral atmospheric atoms penetrate the region of the stellar wind, where they are ionized and mixed with the stellar wind plasma. The 3D MHD model was applied to calculate the detached bow shock and the magnetosheath region between the shock and the streamlined surface-ionopause. We have obtained a thick magnetic barrier, characterized by a strong increase in the magnetic field and total pressure, a decrease in the velocity, pressure and temperature of the plasma. An enhanced magnetic field shifts the ionopause towards the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang T. L., Luhmann J. G., Russell C. T.: The magnetic barrier at Venus. J. Geophys. Res. 96, 11145–11153 (1991). https://doi.org/10.1029/91JA00088

  2. Biernat, H. K., Erkaev, N. V., Farrugia, C. J.: Aspects of MHD flow about Venus. Journal of Geophysical Research. 104, A6, 12617–12626 (1999). https://doi.org/10.1029/1999JA900032

  3. Erkaev, N. V., Bößwetter, A., Motschmann, U., Biernat, H. K.: Aspects of solar wind interaction with Mars: comparison of fluid and hybrid simulations. Annales Geophysicae. 25, 1, 145–159 (2007). https://doi.org/10.5194/angeo-25-145-2007

  4. Erkaev, N. V., Farrugia, C. J., Biernat, H. K.: Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies. Journal of Geophysical Research. 101, A5, 10665–10672. https://doi.org/10.1029/95JA03518

  5. Erkaev N., Mezentsev A., Biernat H.: Influence of the interplanetary magnetic field on the solar wind flow about planetary obstacles. Space Science Reviews. 122, 209–219 (2006). https://doi.org/10.1007/s11214-006-6059-z

  6. Erkaev, N.V., Lammer, H., et al.: XUV exposed non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: Atmospheric expansion and thermal escape. Astrobiology Journal. 13, 1011–1029 (2013). https://doi.org/10.1089/ast.2012.0957

  7. Erkaev, N.V., Lammer, H.., et al.: EUV-driven mass-loss of protoplanetary cores with hydrogendominated atmospheres: the influences of ionization and orbital distance. Monthly Notices of the Royal Astronomical Society. 460, 1300–1309 (2016). https://doi.org/10.1093/mnras/stw935

  8. Murray-Clay, R. A., Chiang, E. I., Murray, N.: Atmospheric escape from Hot Jupiters. Astrophysical Journal. 693, 23–42 (2009). https://doi.org/10.1088/0004-637X/693/1/23

  9. R. Hixon, Evaluation of a high-accuracy MacCormack-type scheme using benchmark problems. J. Comput. Acoustics 6, 291–305 (1998). https://doi.org/10.1142/S0218396X9800020X

  10. Hixon, R., Turkel, E..: Compact implicit MacCormack-type schemes with high accuracy. Journal of Computational Physics. 158, 51–70 (2000). https://doi.org/10.1006/jcph.1999.6406

  11. Gorbunova, K.D., Erkaev, N.V.: Compact MacCormac-type schemes applied for atmospheric escape problem. Journal of Siberian Federal University. Mathematics & Physics. 15(4), 500–509 (2022). https://doi.org/10.17516/1997-1397-2022-15-4-500-509

  12. Carleo, I., Gandolfi, D., Barragán, O., et al.: The multiplanet system TOI-421: A warm Neptune and a super puffy Mini-Neptune transiting a G9 V star in a visual binary. The Astronomical Journal. 160, 114 (2020). https://doi.org/10.3847/1538-3881/aba124.

  13. Berezutsky, A. G., Shaikhislamov, I. F., Rumenskikh, S., Khodachenko, M. L., Lammer, H., Miroshnichenko, I. B.: On the transit spectroscopy features of warm Neptunes in the TOI-421 system, revealed with their 3D aeronomy simulations. Monthly Notices of the Royal Astronomical Society. 515, 706–715 (2022). https://doi.org/10.1093/mnras/stac1633

  14. Erkaev, N. V., Odert, P., Lammer, H., Kislyakova, K. G., Fossati, L., Mezentsev, A., Johnstone, C. P., Kubyshkina, D., Shaikhislamov, I. F., Khodachenko, M. L.: Effect of stellar wind-induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters. Monthly Notices of the Royal Astronomical Society. 470, 4330–4336 (2017). https://doi.org/10.1093/mnras/stx1471

  15. Odert, P., Erkaev, N. V., Kislyakova, K. G., Lammer, H., Mezentsev, A. V., Ivanov, V. A., Fossati, L., Leitzinger, M., Kubyshkina, D., and Holmström, M.: Modeling the Ly\(\alpha \) transit absorption of the hot Jupiter HD 189733b. Astronomy & Astrophysics. 638, A49 (2020). https://doi.org/10.1051/0004-6361/201834814

Download references

Acknowledgements

This work is supported by the Krasnoyarsk Mathematical Center, financed by the Ministry of Science and Higher Education of the Russian Federation in the framework of the establishment and development of regional Centers for Mathematics Research and Education (Agreement No. 075-02-2023-912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai V. Erkaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erkaev, N.V., Gorbunova, K.D. (2023). Magnetic Barrier in Front of Exoplanets Interacting with Stellar Wind. In: Kosterov, A., Lyskova, E., Mironova, I., Apatenkov, S., Baranov, S. (eds) Problems of Geocosmos—2022. ICS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-40728-4_18

Download citation

Publish with us

Policies and ethics