Skip to main content

Mechanics of Lung Development

  • Chapter
  • First Online:
Roles of Skeletal Muscle in Organ Development

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 236))

Abstract

We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 99.00
Price excludes VAT (USA)
Softcover Book
USD 129.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadie V, Champagnat J, Fortin G (2000) Branchiomotor activities in mouse embryo. Neuroreport 11:141–145

    Article  CAS  PubMed  Google Scholar 

  • Abler LL, Mansour SL, Sun X (2009) Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Dev Dyn 238:1999–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achiwa H, Oguri T, Sato S et al (2004) Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Sci 95:753–757

    Article  CAS  PubMed  Google Scholar 

  • Allan DW, Greer JJ (1997) Embryogenesis of the phrenic nerve and diaphragm in the fetal rat. J Comp Neurol 382:459–468

    Article  CAS  PubMed  Google Scholar 

  • Alvarez JD, Yasui DH, Niida H et al (2000) The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 14:521–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babiuk RP, Zhang W, Clugston R et al (2003) Embryological origins and development of the rat diaphragm. J Comp Neurol 455:477–487

    Article  PubMed  Google Scholar 

  • Baguma-Nibasheka M, Angka HE, Inanlou MR et al (2007) Microarray analysis of Myf5-/-:MyoD-/- hypoplastic mouse lungs reveals a profile of genes involved in pneumocyte differentiation. Histol Histopathol 22:483–495

    CAS  PubMed  Google Scholar 

  • Baguma-Nibasheka M, Gugic D, Saraga-Babic M et al (2012) Role of skeletal muscle in lung development. Histol Histopathol 27:817–826

    CAS  PubMed  Google Scholar 

  • Baguma-Nibasheka M, Kablar B (2008) Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev Dyn 237:485–493

    Article  CAS  PubMed  Google Scholar 

  • Bartram U, Speer CP (2004) The role of transforming growth factor beta in lung development and disease. Chest 125:754–765

    Article  PubMed  Google Scholar 

  • Batenburg JJ (1992) Surfactant phospholipids: synthesis and storage. Am J Phys 262:L367–L385

    CAS  Google Scholar 

  • Bellusci S, Furuta Y, Rush MG et al (1997) Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 124:53–63

    Article  CAS  PubMed  Google Scholar 

  • Blott M, Greenough A, Nicolaides KH et al (1990) The ultrasonographic assessment of the fetal thorax and fetal breathing movements in the prediction of pulmonary hypoplasia. Early Hum Dev 21:143–151

    Article  CAS  PubMed  Google Scholar 

  • Bogue CW, Lou LJ, Vasavada H et al (1996) Expression of Hoxb genes in the developing mouse foregut and lung. Am J Respir Cell Mol Biol 15:163–171

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Rudnicki MA, Arnold HH et al (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382

    Article  CAS  PubMed  Google Scholar 

  • Bridges JP, Schehr A, Wang Y et al (2014) Epithelial SCAP/INSIG/SREBP signaling regulates multiple biological processes during perinatal lung maturation. PLoS One. https://doi.org/10.1371/journal.pone.0091376

  • Brigstock DR (2003) The CCN family: a new stimulus package. J Endocrinol 178:169–175

    Article  CAS  PubMed  Google Scholar 

  • Buckingham M (2007) Skeletal muscle progenitor cells and the role of Pax genes. C R Biol 330:530–533

    Article  CAS  PubMed  Google Scholar 

  • Buckingham M, Bajard L, Chang T et al (2003) The formation of skeletal muscle: from somite to limb. J Anat 202:59��68

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess CL, Huang J, Bawa P et al (2023) Generation of human alveolar epithelial type I cells from pluripotent stem cells. bioRxiv. https://doi.org/10.1101/2023.01.19.524655

  • Cardoso WV (2000) Lung morphogenesis revisited: old facts, current ideas. Dev Dyn 219:121–130

    Article  CAS  PubMed  Google Scholar 

  • Cardoso WV (2001) Molecular regulation of lung development. Annu Rev Physiol 63:471–494

    Article  CAS  PubMed  Google Scholar 

  • Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624

    Article  CAS  PubMed  Google Scholar 

  • Chaqour B, Goppelt-Struebe M (2006) Mechanical regulation of the Cyr61/CCN1and CTGF/CCN2 proteins. FEBS J 273:3639–3649

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Yu SL, Chen CH et al (2007) A five-gene signature and clinical outcome in non–small-cell lung cancer. N Engl J Med 356:11–20

    Article  CAS  PubMed  Google Scholar 

  • Colvin JS, White AC, Pratt SJ et al (2001) Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128:2095–2106

    Article  CAS  PubMed  Google Scholar 

  • Costa RH, Kalinichenko VV, Lim L (2001) Transcription factors in mouse lung development and function. Am J Physiol Lung Cell Mol Physiol 280:L823–L838

    Article  CAS  PubMed  Google Scholar 

  • Desai TJ, Brownfield DG, Krasnow MA (2014) Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507:190–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desnoyers L (2004) Structural basis and therapeutic implication of the interaction of CCN proteins with glycoconjugates. Curr Pharm Des 10:3913–3928

    Article  CAS  PubMed  Google Scholar 

  • Dickinson ME, Flenniken AM, Ji X et al (2016) High-throughput discovery of novel developmental phenotypes. Nature 537:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eenjes E, Tibboel D, Wijnen RMH et al (2022) Lung epithelium development and airway regeneration. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.1022457

  • Esteves de Lima J, Relaix F (2021) Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. Cell Regen. https://doi.org/10.1186/s13619-021-00093-5

  • Gerner-Mauro KN, Akiyama H, Chen J (2020) Redundant and additive functions of the four Lef/Tcf transcription factors in lung epithelial progenitors. PNAS 117:12182–12191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer JJ, Allan DW, Martin-Caraballo M et al (1985) An overview of phrenic nerve and diaphragm muscle development in the perinatal rat. J Appl Physiol 86:779–786

    Article  Google Scholar 

  • Gründer A, Ebel TT, Mallo M et al (2002) Nuclear factor I-B (Nfib) deficient mice have severe lung hypoplasia. Mech Dev 112:69–77

    Article  PubMed  Google Scholar 

  • Guha A, Vasconcelos M, Zhao R et al (2014) Analysis of Notch signaling-dependent gene expression in developing airways reveals diversity of Clara cells. PLoS One. https://doi.org/10.1371/journal.pone.0088848

  • Gupta S, Vundavilli H, Osorio RS et al (2022) Integrative network modeling highlights the crucial roles of rho-GDI signaling pathway in the progression of non-small cell lung cancer. IEEE J Biomed Health Inform 26:4785–4793

    Article  PubMed  Google Scholar 

  • Hammond CG, Gordon DC, Fisher JT et al (1989) Motor unit territories supplied by primary branches of the phrenic nerve. J Appl Physiol 66:61–71

    Article  CAS  PubMed  Google Scholar 

  • Harding R (1997) Fetal pulmonary development: the role of respiratory movements. Equine Vet J Suppl 24:32–39

    Article  Google Scholar 

  • Hogan BLM (1999) Morphogenesis. Cell 96:225–233

    Article  CAS  PubMed  Google Scholar 

  • Hogan BLM, Zaret KS (2002) Development of the endoderm and its tissue derivatives. In: Rossant J, Tam PPL (eds) Mouse development. Patterning, morphogenesis, and organogenesis. Academic, San Diego, pp 301–330

    Google Scholar 

  • Hu C, Ma Z, Zhu J et al (2021) Physiological and pathophysiological roles of acidic mammalian chitinase (CHIA) in multiple organs. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2021.111465

  • Inanlou MR, Baguma-Nibasheka M, Kablar B (2005) The role of fetal breathing-like movements in lung organogenesis. Histol Histopathol 20:1261–1266

    CAS  PubMed  Google Scholar 

  • Inanlou MR, Baguma-Nibasheka M, Keating MM et al (2006) Neurotrophins, airway smooth muscle and the fetal breathing-like movements. Histol Histopathol 21:931–940

    CAS  PubMed  Google Scholar 

  • Inanlou MR, Dhillon GS, Belliveau AC et al (2003) A significant reduction of the diaphragm in mdx:MyoD-/-(9th) embryos suggests a role for MyoD in the diaphragm development. Dev Biol 261:324–336

    Article  CAS  PubMed  Google Scholar 

  • Inanlou MR, Kablar B (2003) Abnormal development of the diaphragm in mdx:MyoD9th embryos leads to pulmonary hypoplasia. Int J Dev Biol 47:363–371

    PubMed  Google Scholar 

  • Inanlou MR, Kablar B (2005a) Abnormal development of the intercostal muscles and the rib cage in Myf5-/- embryos leads to pulmonary hypoplasia. Dev Dyn 232:43–54

    Article  PubMed  Google Scholar 

  • Inanlou MR, Kablar B (2005b) Contractile activity of skeletal musculature involved in breathing is essential for normal lung cell differentiation, as revealed in Myf5-/-:MyoD-/- embryos. Dev Dyn 233:772–782

    Article  CAS  PubMed  Google Scholar 

  • Iritani I (1984) Experimental study on embryogenesis of congenital diaphragmatic hernia. Anat Embryol (Berl) 169:133–139

    Article  CAS  PubMed  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN et al (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  CAS  PubMed  Google Scholar 

  • Joe P, Wallen LD, Chapin CJ et al (1997) Effects of mechanical factors on growth and maturation of the lung in fetal sheep. Am J Phys 272:L95–L105

    CAS  Google Scholar 

  • Kablar B (2011) Role of skeletal musculature in the epigenetic shaping of organs, tissues and cell fate choices. In: Hallgrimsson B, Hall BK (eds) Epigenetics, linking genotype and phenotype in development and evolution, 1st edn. University of California Press, Berkeley, Los Angeles, pp 256–268

    Google Scholar 

  • Kablar B, Krastel K, Ying C et al (1997) MyoD and Myf-5 differentially regulate the development of limb vs. trunk skeletal muscle. Development 124:4729–4738

    Article  CAS  PubMed  Google Scholar 

  • Kablar B, Rudnicki MA (2000) Skeletal muscle development in the mouse embryo. Histol Histopathol 15:649–656

    CAS  PubMed  Google Scholar 

  • Kho AT, Bhattacharya S, Mecham BH et al (2009) Expression profiles of the mouse lung identify a molecular signature of time-to-birth. Am J Repir Cell Mol Biol 40:47–57

    Article  CAS  Google Scholar 

  • Kitterman JA (1996) The effects of mechanical forces on fetal lung growth. Clin Perinatol 23:727–740

    Article  CAS  PubMed  Google Scholar 

  • Kohwi-Shigematsu T, Kohwi Y, Takahashi K et al (2012) SATB1-mediated functional packaging of chromatin into loops. Methods 58:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumlauf R, Holland PW, McVey JH et al (1987) Developmental and spatial patterns of expression of the mouse homeobox gene, Hox 2.1. Development 99:603–617

    Article  CAS  PubMed  Google Scholar 

  • Kubota S, Takigawa M (2015) Cellular and molecular actions of CCN2/CTGF and its role under physiological and pathological conditions. Clin Sci (Lond) 128:181–196

    Article  CAS  PubMed  Google Scholar 

  • Kumar VH, Lakshminrusimha S, El Abiad MT et al (2005) Growth factors in lung development. Adv Clin Chem 40:261–317

    Article  CAS  PubMed  Google Scholar 

  • Kuo CT, Veselits ML, Barton KP et al (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11:2996–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau LF, Lam SC-T (1999) The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 248:44–57

    Article  CAS  PubMed  Google Scholar 

  • Laudy JA, Wladimiroff JW (2000) The fetal lung. 1:Developmental aspects. Ultrasound Obstet Gynecol 16:284–290

    Article  CAS  PubMed  Google Scholar 

  • Lazzaro D, Price M, de Felice M et al (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2003) The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 81:355–363

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810

    Article  CAS  PubMed  Google Scholar 

  • Li B, Wang Z, Zhong Y et al (2015) CCR9–CCL25 interaction suppresses apoptosis of lung cancer cells by activating the PI3K/Akt pathway. Med Oncol 32:1–9

    Article  Google Scholar 

  • Li J, Wang Z, Chu Q et al (2018) The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev Cell 44:297–312

    Article  CAS  PubMed  Google Scholar 

  • Liggins GC, Vilos GA, Campos GA et al (1981) The effect of spinal cord transection on lung development in fetal sheep. J Dev Physiol 3:267–274

    CAS  PubMed  Google Scholar 

  • Litingtung Y, Lei L, Westphal H et al (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20:58–61

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Post M (2000) Mechanochemical signal transduction in the fetal lung. J Appl Physiol 89:2078–2084

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Tanswell AK, Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Phys 277:L667–L683

    CAS  Google Scholar 

  • Liu M, Xu J, Liu J et al (1995) Mechanical strain-enhanced fetal lung cell proliferation is mediated by phospholipase C and D and protein kinase C. Am J Phys 268:L729–L738

    CAS  Google Scholar 

  • Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrell AJ, Kardon G (2013) Development of the diaphragm, a skeletal muscle essential for mammalian respiration. FEBS J 280:4026–4035

    Article  CAS  PubMed  Google Scholar 

  • Modepalli V, Kumar A, Sharp JA et al (2018) Gene expression profiling of postnatal lung development in the marsupial gray short-tailed opossum (Monodelphis domestica) highlights conserved developmental pathways and specific characteristics during lung organogenesis. BMC Genomics. https://doi.org/10.1186/s12864-018-5102-2

  • Mombaerts P, Iacomini J, Johnson RS et al (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877

    Article  CAS  PubMed  Google Scholar 

  • Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18:8–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naizhen X, Kido T, Yokoyama S et al (2019) Spatiotemporal expression of three secretoglobin proteins, SCGB1A1, SCGB3A1, and SCGB3A2, in mouse airway epithelia. J Histochem Cytochem 67:453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Harada K, Yamamoto I et al (1992) Human pulmonary hypoplasia. Statistical, morphological, morphometric, and biochemical study. Arch Pathol Lab Med 116:635–642

    CAS  PubMed  Google Scholar 

  • Niblock MM, Perez A, Broitman S et al (2020) In utero development of fetal breathing movements in C57BL6 mice. Respir Physiol Neurobiol. https://doi.org/10.1016/j.resp.2019.103288

  • Noe N, Shim A, Millette K et al (2019) Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia. Lab Investig 99:1363–1375

    Article  CAS  PubMed  Google Scholar 

  • Ornitz DM, Yin Y (2012) Signaling networks regulating development of the lower respiratory tract. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008318

  • Park HL, Bai C, Platt KA et al (2000) Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127:1593–1605

    Article  CAS  PubMed  Google Scholar 

  • Pelosi M, Marampon F, Zani BM et al (2007) ROCK2 and its alternatively spliced isoform ROCK2m positively control the maturation of the myogenic program. Mol Cell Biol 27:6163–6176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Similowski T, Klein W et al (2010) The evolutionary origin of the mammalian diaphragm. Respir Physiol Neurobiol 171:1–16

    Article  PubMed  Google Scholar 

  • Peters K, Werner S, Liao X et al (1994) Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. EMBO J 13:3296–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippidou P, Walsh CM, Aubin J et al (2012) Sustained Hox5 gene activity is required for respiratory motor neuron development. Nat Neurosci 15:1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccolo S (2013) Developmental biology: mechanics in the embryo. Nature 504:223–225

    Article  CAS  PubMed  Google Scholar 

  • Pickering M, Jones J (2002) The diaphragm: two physiological muscles in one. J Anat 201:305–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter HJ (1998) Pulmonary hypoplasia—size is not everything. Virchows Arch 432:4–6

    Article  Google Scholar 

  • Ramazani Y, Knops N, Elmonem MA et al (2018) Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 68-69:44–66

    Article  CAS  PubMed  Google Scholar 

  • Rawlins EL, Clark CP, Xue Y et al (2009) The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136:3741–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AB, Mitchell J (1995) Pulmonary hypoplasia and fetal breathing in preterm premature rupture of membranes. Early Hum Dev 41:27–37

    Article  CAS  PubMed  Google Scholar 

  • Roman J (1995) Effects of calcium channel blockade on mammalian lung branching morphogenesis. Exp Lung Res 21:489–502

    Article  CAS  PubMed  Google Scholar 

  • Sah RK, Ma J, Bah FB et al (2020) Targeted disruption of mouse Dip2B leads to abnormal lung development and prenatal lethality. Int J Mol Sci. https://doi.org/10.3390/ijms21218223

  • Sanchez-Esteban J, Wang Y, Gruppuso PA et al (2004) Mechanical stretch induces fetal type II cell differentiation via an epidermal growth factor receptor-extracellular-regulated protein kinase signaling pathway. Am J Respir Cell Mol Biol 30:76–83

    Article  CAS  PubMed  Google Scholar 

  • Schmitt S, Hendricks P, Weir J et al (2012) Stretching mechanotransduction from the lung to the lab: approaches and physiological relevance in drug discovery. Assay Drug Dev Technol 10:137–147

    Article  CAS  PubMed  Google Scholar 

  • Seegmiller RE, Cooper CA, Houghton MJ et al (1986) Pulmonary hypoplasia in chondrodystrophic mice. Teratology 33:339–347

    Article  CAS  PubMed  Google Scholar 

  • Sefton EM, Gallardo M, Kardon G (2018) Developmental origin and morphogenesis of the diaphragm, an essential mammalian muscle. Dev Biol 440:64–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra I, Pyfrom S, Weiner A et al (2023) Unusual X chromosome inactivation maintenance in female alveolar type 2 cells is correlated with increased numbers of X-linked escape genes and sex-biased gene expression. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2022.12.005

  • Simonet WS, DeRose ML, Bucay N et al (1995) Pulmonary malformation in transgenic mice expressing human keratinocyte growth factor in the lung. Proc Natl Acad Sci U S A 92:12461–12465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder J, Jenkins-Moore M, Jackson S et al (2005) Alveolarization in Retinoic Acid Receptor-β–Deficient Mice. Pediatr Res 57:384–391

    Article  CAS  PubMed  Google Scholar 

  • Stone KC, Mercer RR, Gehr P et al (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6:235–243

    Article  CAS  PubMed  Google Scholar 

  • Stripp BR, Reynolds SD, Boe IM et al (2002) Clara cell secretory protein deficiency alters Clara cell secretory apparatus and the protein composition of airway lining fluid. Am J Respir Cell Mol Biol 27:170–178

    Article  CAS  PubMed  Google Scholar 

  • Stuelsatz P, Keire P, Almuly R et al (2012) A contemporary atlas of the mouse diaphragm: myogenicity, vascularity, and the Pax3 connection. J Histochem Cytochem 60:638–657

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumner R, Crawford A, Mucenski M et al (2000) Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 19:3335–3342

    Article  CAS  PubMed  Google Scholar 

  • Tajbakhsh S, Buckingham ME (1994) Mouse limb muscle is determined in the absence of the earliest myogenic factor myf-5. Proc Natl Acad Sci U S A 91:747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanino Y, Wang X, Nikaido T et al (2019) Syndecan-4 inhibits the development of pulmonary fibrosis by attenuating TGF-β signaling. Int J Mol Sci. https://doi.org/10.3390/ijms20204989

  • Ten Have-Opbroek AA (1981) The development of the lung in mammals: an analysis of concepts and findings. Am J Anat 162:201–219

    Article  PubMed  Google Scholar 

  • Ten Have-Opbroek AAW (1991) Lung development in the mouse embryo. Exp Lung Res 17:111–130

    Article  PubMed  Google Scholar 

  • Tsao PN, Vasconcelos M, Izvolsky KI et al (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136:2297–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng BS, Cavin ST, Booth FW et al (2000) Pulmonary hypoplasia in the myogenin null mouse embryo. Am J Respir Cell Mol Biol 22:304–315

    Article  CAS  PubMed  Google Scholar 

  • Tsuruda T, Sato Y, Tomita M et al (2022) Aberrant expression of cardiac Troponin-T in lung cancer tissues in association with pathological severity. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.833649

  • Tu Z, Deng X, Hou S et al (2020) UHRF1 predicts poor prognosis by triggering cell cycle in lung adenocarcinoma. J Cell Mol Med 24:8069–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uetani N, Chagnon MJ, Kennedy TE et al (2006) Mammalian motoneuron axon targeting requires receptor protein tyrosine phosphatases sigma and delta. J Neurosci 26:5872–5880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volckaert T, De Langhe SP (2015) Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 244:342–366

    Article  CAS  PubMed  Google Scholar 

  • de Vries JI, Visser GH, Prechtl HF (1986) Fetal behaviour in early pregnancy. Eur J Obstet Gynecol Reprod Biol 21:271–276

    Article  PubMed  Google Scholar 

  • Wang H, Wei C, Pan P et al (2021) Identification of a methylomics-associated nomogram for predicting overall survival of stage I–II lung adenocarcinoma. Sci Rep. https://doi.org/10.1038/s41598-021-89429-4

  • Wang J, Campos B, Kaetzel MA et al (1996) Expression of a calmodulin inhibitor peptide in progenitor alveolar type II cells disrupts lung development. Am J Phys 271:L245–L250

    CAS  Google Scholar 

  • Wang YL, Maciejewski BS, Lee N et al (2006) Strain-induced fetal type II epithelial cell differentiation is mediated via cAMP-PKA-dependent signaling pathway. Am J Physiol Lung Cell Mol Physiol 291:L820–L827

    Article  CAS  PubMed  Google Scholar 

  • Wani MA, Wert SE, Lingrel JB (1999) Lung Kruppel-like factor, a zinc finger transcription factor, is essential for normal lung development. J Biol Chem 274:21180–21185

    Article  CAS  PubMed  Google Scholar 

  • Warburton D, El-Hashash A, Carraro G et al (2010) Lung organogenesis. Curr Top Dev Biol 90:73–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitsett J (1998) A lungful of transcription factors. Nat Genet 20:7–8

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth JS, Desai R (1982) Is respiratory function a major determinant of perinatal survival? Lancet 1:264–267

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth JS, Desai R, Guerrini P (1981) Fetal lung hypoplasia: biochemical and structural variations and their possible significance. Arch Dis Child 56:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119:1–17

    Article  CAS  PubMed  Google Scholar 

  • Wood WM, Otis C, Etemad S et al (2020) Development and patterning of rib primordia are dependent on associated musculature. Dev Biol 468:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SH, Wu XH, Lu C et al (2006) Lipoxin A4 inhibits proliferation of human lung fibroblasts induced by connective tissue growth factor. Am J Respir Cell Mol Biol 34:65–72

    Article  CAS  PubMed  Google Scholar 

  • Xu ZY, Zhao M, Chen W et al (2020) Analysis of prognostic genes in the tumor microenvironment of lung adenocarcinoma. PeerJ. https://doi.org/10.7717/peerj.9530

  • Yang J, Hernandez BJ, Martinez Alanis D et al (2016) The development and plasticity of alveolar type 1 cells. Development 143:54–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XM, Vogan K, Gros P et al (1996) Expression of the met receptor tyrosine kinase in muscle progenitor cells in somites and limbs is absent in Splotch mice. Development 122:2163–2171

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Wessels A, Chen J et al (2004) Late gestational lung hypoplasia in a mouse model of the smith-Lemli-Opitz syndrome. BMC Dev Biol. https://doi.org/10.1186/1471-213X-4-1

  • Zaykov V, Chaqour B (2021) The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal 15:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zheng A, Hydbring P et al (2017) PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep 19:2289–2303

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Chen H, Peschon JJ et al (2001) Pulmonary hypoplasia in mice lacking tumor necrosis factor-alpha converting enzyme indicates an indispensable role for cell surface protein shedding during embryonic lung branching morphogenesis. Dev Biol 232:204–218

    Article  CAS  PubMed  Google Scholar 

  • Zuo YY, Veldhuizen RA, Neumann AW et al (2008) Current perspectives in pulmonary surfactant–inhibition, enhancement and evaluation. Biochim Biophys Acta 1778:1947–1977

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Baguma-Nibasheka .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest. This chapter is a review of previously published accounts and as such, no animal or human studies were performed.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baguma-Nibasheka, M., Kablar, B. (2023). Mechanics of Lung Development. In: Kablar, B. (eds) Roles of Skeletal Muscle in Organ Development. Advances in Anatomy, Embryology and Cell Biology, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-031-38215-4_6

Download citation

Publish with us

Policies and ethics