Skip to main content

Essentials of Lattice Gauge Theories (LGT)

  • Chapter
  • First Online:
Strings to Strings

Part of the book series: Lecture Notes in Physics ((LNP,volume 1018))

  • 373 Accesses

Abstract

This chapter gives an introduction to Lattice Gauge Theories (LGT). After an introduction into the history of the subject beginning with Wegner’s \(Z_2\) LGT, the three pillars of Euclidean LGT’s, namely, (i) the path-integral formulation of QFT’s, (ii) Euclideanization and (iii) discretization, are very carefully discussed. The exact mapping between QFT’s in D space-time dimensions and classical equilibrium statistical mechanics in D spatial dimensions is explained along with the central role this connection plays in the numerical simulations of LGT’s. The necessity of taking the continuum limit of LGT’s resulting in the concept of the statistical continuum limit is carefully explained and an explicit analytical example is constructed in \(D=1\) to illustrate its nuances. The importance of phase transitions with diverging correlation functions is also thoroughly discussed. The chapter then elaborates the issues involved in discretizing gauge theories, both abelian and non-abelian. A description of Wilson’s LGT is presented. After discussing gauge-invariant objects in continuum gauge theories, the corresponding invariants on the lattice like the Wegner-Wilson loops and the Polyakov Loops (Lines) are constructed and their uses explained. The Euclidean path-integrals for LGT’s with plaquette actions are constructed with the help of the group theoretic Haar measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 59.99
Price excludes VAT (USA)
Softcover Book
USD 79.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Wegner, J. Math. Phys. 12, 2259 (1971)

    Google Scholar 

  2. H.A. Kramers, G.H. Wannier, Phys. Rev. 60, 252 (1941)

    Google Scholar 

  3. J. Kogut, L. Susskind, Phys. Rev. D 11, 395 (1975)

    Google Scholar 

  4. J. Kogut, Rev. Mod. Phy. 51, 659 (1979)

    Google Scholar 

  5. K.G. Wilson, Phys. Rev. D 10, 2445 (1974)

    Google Scholar 

  6. E. Seiler, Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Lecture Notes in Physics, vol. 159 (Springer, 1982)

    Google Scholar 

  7. G. Mack, V.B. Petkova, Ann. Phys. NY 23, 442 (1979)

    Google Scholar 

  8. J. Fröhlich, Phys. Lett. B 83, 195 (1979)

    Google Scholar 

  9. F.A. Berezin, The Method of Second Quantization (Academic, New York, 1966)

    Google Scholar 

  10. J. Smit, unpublished, 1972–73. Private communication to K.G. Wilson from R.J. Finkelstein, with unpublished documentation of Jan Smit’s studies of lattice gauge theory while he was a graduate student at UCLA

    Google Scholar 

  11. A.M. Polyakov unpublished; see also Phys. Lett. B 59, 82 (1975)

    Google Scholar 

  12. K.G. Wilson in Future Directions in Particle Theory, 1983 Lepton-Photon Symposium, Cornell

    Google Scholar 

  13. K. Osterwalder, E. Seiler, Ann. Phys. 110, 440 (1978)

    Google Scholar 

  14. M. Lüscher, Comm. Math. Phy. 54, 283 (1977)

    Google Scholar 

  15. R.P. Feynman, Rev. Mod. Phys. 20, 267 (1948)

    Google Scholar 

  16. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw Hill, 2010)

    Google Scholar 

  17. S. Weinberg, The Quantum Theory of Fields -I (Cambridge University Press, 1984)

    Google Scholar 

  18. N.D. Hari Dass, Dirac and the Path Integral (2020) arXiv:2003.12683 [hist-ph]

  19. H. Kleinert, Path Integrals (World Scientific, 2009)

    Google Scholar 

  20. B.E. Baaquie, Quantum Finance (Cambridge University Press)

    Google Scholar 

  21. A.M. Polyakov, Phys. Lett. B 103, 207 (1981)

    Google Scholar 

  22. J. Polchinski, String Theory - I (Cambridge University Press, 2013)

    Google Scholar 

  23. J. Schwinger, Proc. Nat. Acad. Sc. 44 956 (1958)

    Google Scholar 

  24. T. Nakano, Phys. Rev. 115, 721 (1959)

    Google Scholar 

  25. J. Schwinger, Four-Dimensional Euclidean Formulation of QFT, in ICHEP58

    Google Scholar 

  26. J. Schwinger, Particles, Sources, and Fields -I (Addison-Wesley Publishing Company, 1970)

    Google Scholar 

  27. R. Haag, Local Quantum Physics, 2nd edn. (Springer Publications, 1991)

    Google Scholar 

  28. K. Osterwalder, R. Schrader, Comm. Math. Phy. 31, 83 (1973)

    Google Scholar 

  29. K. Osterwalder, R. Schrader, Comm. Math. Phy. 42, 281 (1975)

    Google Scholar 

  30. B. de Wit, J. Smith, Field Theory in Particle Physics - I (North Holland Personal Library, 2012)

    Google Scholar 

  31. S.W. Hawking, W. Israel, (eds.), General Relativity - An Einstein Centenary Survey (Cambridge University Press, 2010)

    Google Scholar 

  32. M. Creutz, Phys. Rev. D 21, 2308 (1980)

    Google Scholar 

  33. N.D. Hari Dass, Int. J. Mod. Phy. B 14 1989 (2000)

    Google Scholar 

  34. M. Creutz, Phys. Rev. D 15, 1128 (1977)

    Google Scholar 

  35. M. Creutz, Quarks, Gluons and Lattices. Cambridge Monographs in Mathematical Physics (Cambridge University Press, 1983)

    Google Scholar 

  36. I. Montvay, G. Munster, Quantum Fields on a Lattice (Cambridge University Press, 1994)

    Google Scholar 

  37. C. Itzykson, J.M. Drouffe, Statistical Field Theory, Vols. I and II. Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1988)

    Google Scholar 

  38. H.J. Rothe, Lattice Gauge Theories. Lecture Notes on Physics (World Scientific, 2012)

    Google Scholar 

  39. B.E. Baaquie, Lattice Quantum Field Theory of the Dirac and Gauge Fields (World Scientific, 2020)

    Google Scholar 

  40. C. Gattringer, C. Lang, Quantum Chromodynamics on the Lattice (Springer, 2009)

    Google Scholar 

  41. C. Rebbi, Lattice Gauge Theories and Monte Carlo Simulations (World Scientific, 1983)

    Google Scholar 

  42. R. Oeckel, Discrete Gauge Theory: From Lattices to TQFT (Imperial College Press, 2005)

    Google Scholar 

  43. J. Smit, Introduction to quantum fields on a lattice. Camb. Lect. Notes Phys. 15, 1–271 (2002)

    Google Scholar 

  44. N.D. Hari Dass, Lattice Theory for Non-specialists, NIKHEF-H 84/11 Oct 1984

    Google Scholar 

  45. J. Greensite, An Introduction to The Confinement Problem. Lecture Notes on Physics, vol. 821 (Springer, 2011)

    Google Scholar 

  46. J. Ambjorn, B. Durhuus, T. Jonsson, Quantum Geometry. Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2021)

    Google Scholar 

  47. A.M. Polyakov, Gauge Fields and Strings (Harwood Academic Publishers, 1987)

    Google Scholar 

  48. J.M. Kosterlitz, G.J. Thouless, J. Phys. C6, 1181 (1973)

    Google Scholar 

  49. N.D. Hari Dass, Essentials of Thermodynamics (SRI Books, Singapore, 2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Hari Dass .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hari Dass, N.D. (2023). Essentials of Lattice Gauge Theories (LGT). In: Strings to Strings. Lecture Notes in Physics, vol 1018. Springer, Cham. https://doi.org/10.1007/978-3-031-35358-1_20

Download citation

Publish with us

Policies and ethics