Skip to main content

Abstract

Ultrasound of the airway is an area of growing interest in critical care. As ventral structures of the oropharynx, larynx, and trachea are relatively unobstructed for sonography, ultrasound has the potential to provide information for airway diagnosis as well as procedural guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 119.00
Price excludes VAT (USA)
Hardcover Book
USD 159.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altun D, Orhan-Sungur M, Ali A, Özkan-Seyhan T, Sivrikoz N, Çamcı E. The role of ultrasound in appropriate endotracheal tube size selection in pediatric patients. Paediatr Anaesth. 2017;27(10):1015–20. https://doi.org/10.1111/pan.13220. Epub 2017 Aug 28. PMID: 28846176.

    Article  PubMed  Google Scholar 

  2. Gollu G, Onat Bermede A, Khanmammadov F, Ates U, Genc S, Selvi Can O, Fitoz S, Alanoglu Z, Yagmurlu A. Use of ultrasonography as a noninvasive decisive tool to determine the accurate endotracheal tube size in anesthetized children. Arch Argent Pediatr. 2018;116(3):172–8. https://doi.org/10.5546/aap.2018.eng.172. English, Spanish. PMID: 29756700.

    Article  PubMed  Google Scholar 

  3. Hao J, Zhang J, Dong B, Luo Z. The accuracy of ultrasound to predict endotracheal tube size for pediatric patients with congenital scoliosis. BMC Anesthesiol. 2020;20(1):183. https://doi.org/10.1186/s12871-020-01106-7. PMID: 32736523; PMCID: PMC7394693.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hao J, Zhang J, Wu Z, Cai W, Dong B, Luo Z. Accuracy of ultrasound to measure the cricoid cartilage diameter in children. Acta Anaesthesiol Scand. 2020;64(10):1426–30. https://doi.org/10.1111/aas.13687. Epub 2020 Sep 13. PMID: 32803771.

    Article  PubMed  Google Scholar 

  5. Kim EJ, Kim SY, Kim WO, Kim H, Kil HK. Ultrasound measurement of subglottic diameter and an empirical formula for proper endotracheal tube fitting in children. Acta Anaesthesiol Scand. 2013;57(9):1124–30. https://doi.org/10.1111/aas.12167. Epub 2013 Aug 2. PMID: 23909603.

    Article  CAS  PubMed  Google Scholar 

  6. Makireddy R, Cherian A, Elakkumanan LB, Bidkar PU, Kundra P. Correlation between correctly sized uncuffed endotracheal tube and ultrasonographically determined subglottic diameter in paediatric population. Indian J Anaesth. 2020;64(2):103–8. https://doi.org/10.4103/ija.IJA_619_19. Epub 2020 Feb 4. PMID: 32139927; PMCID: PMC7017658.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pillai R, Kumaran S, Jeyaseelan L, George SP, Sahajanandan R. Usefulness of ultrasound-guided measurement of minimal transverse diameter of subglottic airway in determining the endotracheal tube size in children with congenital heart disease: a prospective observational study. Ann Card Anaesth. 2018;21(4):382–7. https://doi.org/10.4103/aca.ACA_220_17. PMID: 30333331; PMCID: PMC6206798.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schramm C, Knop J, Jensen K, Plaschke K. Role of ultrasound compared to age-related formulas for uncuffed endotracheal intubation in a pediatric population. Paediatr Anaesth. 2012;22(8):781–6. https://doi.org/10.1111/j.1460-9592.2012.03889.x. Epub 2012 May 21. PMID: 22612446.

    Article  PubMed  Google Scholar 

  9. Shibasaki M, Nakajima Y, Ishii S, Shimizu F, Shime N, Sessler DI. Prediction of pediatric endotracheal tube size by ultrasonography. Anesthesiology. 2010;113(4):819–24. https://doi.org/10.1097/ALN.0b013e3181ef6757. PMID: 20808208.

    Article  PubMed  Google Scholar 

  10. Sutagatti JG, Raja R, Kurdi MS. Ultrasonographic estimation of endotracheal tube size in paediatric patients and its comparison with physical indices based formulae: a prospective study. J Clin Diagn Res. 2017;11(5):UC05–8. https://doi.org/10.7860/JCDR/2017/25905.9838. Epub 2017 May 1. PMID: 28658880; PMCID: PMC5483782.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang K, Ma RJ, Zheng JJ, Chen YQ, Zhang MZ. Selection of cuffed endotracheal tube for children with congenital heart disease based on an ultrasound-based linear regression formula. J Clin Monit Comput. 2019;33(4):687–94. https://doi.org/10.1007/s10877-018-0203-7. Epub 2018 Sep 28. PMID: 30264220.

    Article  PubMed  Google Scholar 

  12. Orhan-Sungur M, Altun D, Özkan-Seyhan T, Aygün E, Koltka K, Çamcı E. Learning curve of ultrasound measurement of subglottic diameter for endotracheal tube selection in pediatric patients. Paediatr Anaesth. 2019;29(12):1194–200. https://doi.org/10.1111/pan.13751. Epub 2019 Oct 20. PMID: 31583796.

    Article  PubMed  Google Scholar 

  13. Andruszkiewicz P, Wojtczak J, Wroblewski L, Kaczor M, Sobczyk D, Kowalik I. Ultrasound evaluation of the impact of cricoid pressure versus novel ‘paralaryngeal pressure’ on anteroposterior oesophageal diameter. Anaesthesia. 2016;71(9):1024–9. https://doi.org/10.1111/anae.13518. PMID: 27523050.

    Article  CAS  PubMed  Google Scholar 

  14. Kim H, Chang JE, Won D, Lee JM, Jung JY, Choi S, Min SW, Hwang JY. The effect of cricoid and paralaryngeal force on upper oesophageal occlusion during induction of anaesthesia: a randomised, crossover study. Anaesthesia. 2020;75(2):179–86. https://doi.org/10.1111/anae.14873. Epub 2019 Oct 21. PMID: 31631314.

    Article  CAS  PubMed  Google Scholar 

  15. Galicinao J, Bush AJ, Godambe SA. Use of bedside ultrasonography for endotracheal tube placement in pediatric patients: a feasibility study. Pediatrics. 2007;120(6):1297–303. https://doi.org/10.1542/peds.2006-2959. PMID: 18055679.

    Article  PubMed  Google Scholar 

  16. Tsung JW, Fenster D, Kessler DO, Novik J. Dynamic anatomic relationship of the esophagus and trachea on sonography: implications for endotracheal tube confirmation in children. J Ultrasound Med. 2012;31(9):1365–70. https://doi.org/10.7863/jum.2012.31.9.1365. PMID: 22922616.

    Article  PubMed  Google Scholar 

  17. Tessaro MO, Salant EP, Arroyo AC, Haines LE, Dickman E. Tracheal rapid ultrasound saline test (T.R.U.S.T.) for confirming correct endotracheal tube depth in children. Resuscitation. 2015;89:8–12. https://doi.org/10.1016/j.resuscitation.2014.08.033. Epub 2014 Sep 17. PMID: 25238740.

    Article  PubMed  Google Scholar 

  18. Uya A, Gautam NK, Rafique MB, Pawelek O, Patnana SR, Gupta-Malhotra M, Balaguru D, Numan MT, Hill MJ, Miller SK. Point-of-care ultrasound in sternal notch confirms depth of endotracheal tube in children. Pediatr Crit Care Med. 2020;21(7):e393–8. https://doi.org/10.1097/PCC.0000000000002311. PMID: 32168296.

    Article  PubMed  Google Scholar 

  19. Slovis TL, Poland RL. Endotracheal tubes in neonates: sonographic positioning. Radiology. 1986;160(1):262–3. https://doi.org/10.1148/radiology.160.1.3520649. PMID: 3520649.

    Article  CAS  PubMed  Google Scholar 

  20. Sethi A, Nimbalkar A, Patel D, Kungwani A, Nimbalkar S. Point of care ultrasonography for position of tip of endotracheal tube in neonates. Indian Pediatr. 2014;51(2):119–21. https://doi.org/10.1007/s13312-014-0353-8. PMID: 24632693.

    Article  PubMed  Google Scholar 

  21. Chowdhry R, Dangman B, Pinheiro JM. The concordance of ultrasound technique versus X-ray to confirm endotracheal tube position in neonates. J Perinatol. 2015;35(7):481–4. https://doi.org/10.1038/jp.2014.240. Epub 2015 Jan 22. PMID: 25611791.

    Article  CAS  PubMed  Google Scholar 

  22. Najib K, Pishva N, Amoozegar H, Pishdad P, Fallahzadeh E. Ultrasonographic confirmation of endotracheal tube position in neonates. Indian Pediatr. 2016;53(10):886–8. https://doi.org/10.1007/s13312-016-0953-6. PMID: 27771669.

    Article  PubMed  Google Scholar 

  23. Oulego-Erroz I, Alonso-Quintela P, Rodríguez-Blanco S, Mata-Zubillaga D, Fernández-Miaja M. Verification of endotracheal tube placement using ultrasound during emergent intubation of a preterm infant. Resuscitation. 2012;83(6):e143–4. https://doi.org/10.1016/j.resuscitation.2012.02.014. Epub 2012 Mar 2. PMID: 22387919.

    Article  PubMed  Google Scholar 

  24. Zaytseva A, Kurepa D, Ahn S, Weinberger B. Determination of optimal endotracheal tube tip depth from the gum in neonates by X-ray and ultrasound. J Matern Fetal Neonatal Med. 2020;33(12):2075–80. https://doi.org/10.1080/14767058.2018.1538350. Epub 2019 Apr 22. PMID: 30332898.

    Article  PubMed  Google Scholar 

  25. Singh P, Thakur A, Garg P, Aggarwal N, Kler N. Normative data of optimally placed endotracheal tube by point-of-care ultrasound in neonates. Indian Pediatr. 2019;56(5):374–80. PMID: 31102379.

    Article  PubMed  Google Scholar 

  26. Dennington D, Vali P, Finer NN, Kim JH. Ultrasound confirmation of endotracheal tube position in neonates. Neonatology. 2012;102(3):185–9. https://doi.org/10.1159/000338585. Epub 2012 Jul 6. PMID: 22777009.

    Article  PubMed  Google Scholar 

  27. Hsieh KS, Lee CL, Lin CC, Huang TC, Weng KP, Lu WH. Secondary confirmation of endotracheal tube position by ultrasound image. Crit Care Med. 2004;32(9 Suppl):S374–7. https://doi.org/10.1097/01.ccm.0000134354.20449.b2. PMID: 15508663.

    Article  PubMed  Google Scholar 

  28. Kerrey BT, Geis GL, Quinn AM, Hornung RW, Ruddy RM. A prospective comparison of diaphragmatic ultrasound and chest radiography to determine endotracheal tube position in a pediatric emergency department. Pediatrics. 2009;123(6):e1039–44. https://doi.org/10.1542/peds.2008-2828. Epub 2009 May 4. PMID: 19414520.

    Article  PubMed  Google Scholar 

  29. Lin MJ, Gurley K, Hoffmann B. Bedside ultrasound for tracheal tube verification in pediatric emergency department and ICU patients: a systematic review. Pediatr Crit Care Med. 2016;17(10):e469–76. https://doi.org/10.1097/PCC.0000000000000907.

    Article  PubMed  Google Scholar 

  30. Walsh B, Fennessy P, Ni Mhuircheartaigh R, Snow A, McCarthy KF, McCaul CL. Accuracy of ultrasound in measurement of the pediatric cricothyroid membrane. Paediatr Anaesth. 2019;29(7):744–52. https://doi.org/10.1111/pan.13658. Epub 2019 May 27. PMID: 31063634.

    Article  PubMed  Google Scholar 

  31. Lee MGY, Millar J, Rose E, Jones A, Wood D, Luitingh TL, Zannino D, Brink J, Konstantinov IE, Brizard CP, d'Udekem Y. Laryngeal ultrasound detects a high incidence of vocal cord paresis after aortic arch repair in neonates and young children. J Thorac Cardiovasc Surg. 2018;155(6):2579–87. https://doi.org/10.1016/j.jtcvs.2017.12.133. Epub 2018 Feb 9. PMID: 29510943.

    Article  PubMed  Google Scholar 

  32. Ongkasuwan J, Ocampo E, Tran B. Laryngeal ultrasound and vocal fold movement in the pediatric cardiovascular intensive care unit. Laryngoscope. 2017;127(1):167–72. https://doi.org/10.1002/lary.26051. Epub 2016 Apr 23. PMID: 27107409.

    Article  PubMed  Google Scholar 

  33. Sayyid Z, Vendra V, Meister KD, Krawczeski CD, Speiser NJ, Sidell DR. Application-based translaryngeal ultrasound for the assessment of vocal fold mobility in children. Otolaryngol Head Neck Surg. 2019;161(6):1031–5. https://doi.org/10.1177/0194599819877650. Epub 2019 Sep 24. PMID: 31547773.

    Article  PubMed  Google Scholar 

  34. Shaath GA, Jijeh A, Alkurdi A, Ismail S, Elbarbary M, Kabbani MS. Ultrasonography assessment of vocal cords mobility in children after cardiac surgery. J Saudi Heart Assoc. 2012;24(3):187–90. https://doi.org/10.1016/j.jsha.2012.02.009. Epub 2012 Mar 15. PMID: 23960693; PMCID: PMC3727376.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang LM, Zhu Q, Ma T, Li JP, Hu R, Rong XY, Xu W, Wang ZC. Value of ultrasonography in diagnosis of pediatric vocal fold paralysis. Int J Pediatr Otorhinolaryngol. 2011;75(9):1186–90. https://doi.org/10.1016/j.ijporl.2011.06.017. Epub 2011 Jul 18. PMID: 21763007.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang WQ, Lambert EM, Ongkasuwan J. Point of care, clinician-performed laryngeal ultrasound and pediatric vocal fold movement impairment. Int J Pediatr Otorhinolaryngol. 2020;129:109773. https://doi.org/10.1016/j.ijporl.2019.109773. Epub 2019 Nov 9. PMID: 31790923.

    Article  PubMed  Google Scholar 

  37. Hamilton CE, Su E, Tawfik D, Fernandez E, Veten A, Conlon T, Ginsburg S, Mariano K, Sidell D, Haileselassie B, Pediatric Research Collaborative on Critical Ultrasound (PeRCCUS). Assessment of vocal cord motion using laryngeal ultrasound in children: a systematic review and meta-analysis. Pediatr Crit Care Med. 2021;22(10):e532–9. https://doi.org/10.1097/PCC.0000000000002734. PMID: 33833204.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Su, E., Haileselassie, B. (2023). Airway Ultrasound. In: Singh, Y., Tissot, C., Fraga, M.V., Conlon, T. (eds) Point-of-Care Ultrasound for the Neonatal and Pediatric Intensivist. Springer, Cham. https://doi.org/10.1007/978-3-031-26538-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26538-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26537-2

  • Online ISBN: 978-3-031-26538-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics