Skip to main content

Drug Resistance

  • Chapter
  • First Online:
Scabies

Abstract

There are concerns regarding the potential development of drug resistance in scabies. Recently, there has been a substantial increase in the global incidence of scabies, together with reports of treatment failure in parts of Europe. While it can be difficult to demonstrate cases of genuine resistance, there is now clinical evidence that permethrin resistance may indeed explain a proportion of these treatment failures. Permethrin resistance has been confirmed in a laboratory model of Sarcoptes scabiei var. canis and is associated with sodium channel mutations and increased detoxification activity. Ivermectin resistance has also been noted in cases of crusted scabies, with several other cases of ivermectin treatment failure likely linked to resistance. Resistance to ivermectin and other macrocyclic lactones is likely a polyfactorial trait. Increased transcription of a P-glycoprotein efflux pump and detoxifying Glutathione S- transferases was found in mites collected from patients after ivermectin treatment. Mutations in ligand-gated chloride channels have been associated with ivermectin resistance in other mites and lice and would be worthy of investigation in S. scabiei. Research efforts should focus on the collection of mites in cases of suspected resistance for molecular analysis. Further characterisation of the scabies mite ion channels would better develop understanding of the physiological targets of acaricides and help guide treatment strategies to avoid further development of resistance. This may include using synergised pyrethroids and/or combination therapies with different target effects in S. scabiei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosumeck S, Nast A, Dressler C. Ivermectin and permethrin for treating scabies. Cochrane Database Syst Rev. 2018;4(4):Cd012994. https://doi.org/10.1002/14651858.Cd012994.

    Article  PubMed  Google Scholar 

  2. Loomis D, Guyton K, Grosse Y, El Ghissasi F, Bouvard V, Benbrahim-Tallaa L, et al. Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid. Lancet Oncol. 2015;16(8):891–2. https://doi.org/10.1016/s1470-2045(15)00081-9.

    Article  CAS  PubMed  Google Scholar 

  3. Yonkosky D, Ladia L, Gackenheimer L, Schultz MW. Scabies in nursing homes: an eradication program with permethrin 5% cream. J Am Acad Dermatol. 1990;23(6):1133–6.

    Article  CAS  PubMed  Google Scholar 

  4. Purvis RS, Tyring SK. An outbreak of lindane resistant scabies treated successfully with permethrin 5% cream. J Am Acad Dermatol. 1991;25(6):1015–6.

    Article  CAS  PubMed  Google Scholar 

  5. Boix V, Sanchez-Paya J, Portilla J, Merino E. Nosocomial outbreak of scabies clinically resistant to lindane. Infect Control Hosp Epidemiol. 1997;18(10):677.

    Article  CAS  PubMed  Google Scholar 

  6. Roth WI. Scabies resistant to lindane 1% lotion and crotamiton 10% cream. J Am Acad Dermatol. 1991;24(3):502–3.

    Article  CAS  PubMed  Google Scholar 

  7. Hernandez-Perez E. Resistance to antiscabietic drugs. J Am Acad Dermatol. 1983;8(1):121–2.

    Article  CAS  PubMed  Google Scholar 

  8. Meinking TL. Safety of permethrin vs lindane for the treatment of scabies. Arch Dermatol. 1996;132:959.

    Article  CAS  PubMed  Google Scholar 

  9. Taplin D. Resistance to antiscabietic drugs (reply). J Am Acad Dermatol. 1983;8(1):122–3.

    Article  Google Scholar 

  10. Buehlmann M, Beltraminelli H, Strub C, Bircher A, Jordan X, Battegay M, et al. Scabies outbreak in an intensive care unit with 1,659 exposed individuals- key factors for controlling the outbreak. Infect Control Hosp Epidemiol. 2009;30(4):354–60.

    Article  PubMed  Google Scholar 

  11. Fraser J. Permethrin: a top end viewpoint and experience. Med J Aust. 1994;160:806.

    Article  CAS  PubMed  Google Scholar 

  12. Walton SF, Myerscough MR, Currie BJ. Studies in vitro on the relative efficacy of current acaricides for Sarcoptes scabiei var. hominis. Trans R Soc Trop Med Hyg. 2000;94:92–6.

    Article  CAS  PubMed  Google Scholar 

  13. Pasay C, Arlian L, Morgan M, Gunning R, Rossiter L, Holt D, et al. The effect of insecticide synergists on the response of scabies mites to pyrethroid acaricides. PLoS Negl Trop Dis. 2009;3(1):e354. https://doi.org/10.1371/journal.pntd.0000354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang F, Bernigaud C, Candy K, Melloul E, Izri A, Durand R, et al. Efficacy assessment of biocides or repellents for the control of Sarcoptes scabiei in the environment. Parasit Vectors. 2015;8:416. https://doi.org/10.1186/s13071-015-1027-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walton SF, McKinnon M, Pizzutto S, Dougall A, Williams E, Currie BJ. Acaricidal activity of Melaleuca alternifolia (tea tree) oil: in vitro sensitivity of sarcoptes scabiei var hominis to terpinen-4-ol. Arch Dermatol. 2004;140(5):563–6. https://doi.org/10.1001/archderm.140.5.563.

    Article  CAS  PubMed  Google Scholar 

  16. Mounsey KE, Pasay CJ, Arlian LG, Morgan MS, Holt DC, Currie BJ, et al. Increased transcription of glutathione S-transferases in acaricide exposed scabies mites. Parasit Vectors. 2010;3:43. https://doi.org/10.1186/1756-3305-3-43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pasay C, Walton S, Fischer K, Holt D, McCarthy J. PCR-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var hominis). Am J Trop Med Hyg. 2006;74(4):649–57.

    Article  CAS  PubMed  Google Scholar 

  18. Mounsey KE, Walton SF, Innes A, Cash-Deans S, McCarthy JS. In vitro efficacy of Moxidectin versus Ivermectin against Sarcoptes scabiei. Antimicrob Agents Chemother. 2017;61(8):e00381. https://doi.org/10.1128/aac.00381-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sunderkötter C, Aebischer A, Neufeld M, Löser C, Kreuter A, Bialek R, et al. Increase of scabies in Germany and development of resistant mites? Evidence and consequences. J Dtsch Dermatol Ges. 2019;17(1):15–23. https://doi.org/10.1111/ddg.13706.

    Article  PubMed  Google Scholar 

  20. Hamm H, Beiteke U, Höger PH, Seitz CS, Thaci D, Sunderkötter C. Treatment of scabies with 5% permethrin cream: results of a German multicenter study. J Dtsch Dermatol Ges. 2006;4(5):407–13. https://doi.org/10.1111/j.1610-0387.2006.05941.x.

    Article  PubMed  Google Scholar 

  21. Elsner E, Uhlmann T, Krause S, Hartmann R. Increase of scabies and therapy resistance among German military personnel: an 8-year follow-up study in the Department of Dermatology of the armed forces hospital Berlin, Germany (2012-2019). Hautarzt. 2020;71(6):447–54. https://doi.org/10.1007/s00105-020-04608-0.

    Article  CAS  PubMed  Google Scholar 

  22. Hackenberg B, Horváth ON, Petachti M, Schult R, Yenigün N, Bannenberg P. Scabies therapy in Germany: results of a nationwide survey with a special focus on the efficacy of first-line therapy with permethrin. Hautarzt. 2020;71(5):374–9. https://doi.org/10.1007/s00105-020-04561-y.

    Article  CAS  PubMed  Google Scholar 

  23. Amato E, Dansie LS, Grøneng GM, Blix HS, Bentele H, Veneti L, et al. Increase of scabies infestations, Norway, 2006 to 2018. Euro Surveill. 2019;24(23):190020. https://doi.org/10.2807/1560-7917.Es.2019.24.23.190020.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meyersburg D, Kaiser A, Bauer JW. Loss of efficacy of topical 5% permethrin for treating scabies: an Austrian single-center study. J Dermatolog Treat. 2020;33:774. https://doi.org/10.1080/09546634.2020.1774489.

    Article  PubMed  Google Scholar 

  25. Mounsey KE, Murray HC, King M, Oprescu F. Retrospective analysis of institutional scabies outbreaks from 1984 to 2013: lessons learned and moving forward. Epidemiol Infect. 2016;144(11):2462–71. https://doi.org/10.1017/s0950268816000443.

    Article  CAS  PubMed  Google Scholar 

  26. Currie BJ, Harumal P, McKinnon M, Walton SF. First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei. Clin Infect Dis. 2004;39(1):e8–12. https://doi.org/10.1086/421776.

    Article  CAS  PubMed  Google Scholar 

  27. Mounsey KE, Holt DC, McCarthy JS, Currie BJ, Walton SF. Longitudinal evidence of increasing in vitro tolerance of scabies mites to ivermectin in scabies-endemic communities. Arch Dermatol. 2009;145(7):840–1. https://doi.org/10.1001/archdermatol.2009.125.

    Article  PubMed  Google Scholar 

  28. Fujimoto K, Kawasaki Y, Morimoto K, Kikuchi I, Kawana S. Treatment for crusted scabies: limitations and side effects of treatment with Ivermectin. J Nippon Med Sch. 2014;81:157–63.

    Article  PubMed  Google Scholar 

  29. Terada Y, Murayama N, Ikemura H, Morita T, Nagata M. Sarcoptes scabiei var. canis refractory to ivermectin treatment in two dogs. Vet Dermatol. 2010;21(6):608–12. https://doi.org/10.1111/j.1365-3164.2010.00895.x.

    Article  PubMed  Google Scholar 

  30. Van den Hoek J, Van de Weerd J, Baayen T, Molenaar P, Sonder G, Van Ouwerkerk I, et al. A persistent problem with scabies in and outside a nursing home in Amsterdam: indications for resistance to lindane and ivermectin. Euro Surveill. 2008;13(48):5–14.

    Google Scholar 

  31. Nofal A. Variable response of crusted scabies to oral ivermectin: report on eight Egyptian patients. J Eur Acad Dermatol Venereol. 2009;23(7):793–7. https://doi.org/10.1111/j.1468-3083.2009.03177.x.

    Article  CAS  PubMed  Google Scholar 

  32. Haas N, Lindemann U, Frank K, Sterry W, Lademann J, Katzung W. Rapid and preferential sebum secretion of ivermectin: a new factor that may determine drug responsiveness in patients with scabies. Arch Dermatol. 2002;138(12):1618–9. https://doi.org/10.1001/archderm.138.12.1618.

    Article  PubMed  Google Scholar 

  33. De Sainte MB, Mallet S, Gaudy-Marqueste C, Baumstarck K, Bentaleb N, Loundou A, et al. Therapeutic failure in scabies: an observational study. Ann Dermatol Venereol. 2016;143(1):9–15. https://doi.org/10.1016/j.annder.2015.10.588.

    Article  Google Scholar 

  34. Aussy A, Houivet E, Hébert V, Colas-Cailleux H, Laaengh N, Richard C, Ouvry M, Boulard C, Léger S, Litrowski N, Benichou J, Joly P; investigators from the Normandy Association of Medical Education in Dermatology. Risk factors for treatment failure in scabies: a cohort study. Br J Dermatol. 2019;180(4):888–93. https://doi.org/10.1111/bjd.17348. Epub 2019 Mar 4. PMID: 30376179.

  35. Marks M, Toloka H, Baker C, Kositz C, Asugeni J, Puiahi E, et al. Randomized trial of community treatment with azithromycin and Ivermectin mass drug administration for control of scabies and impetigo. Clin Infect Dis. 2019;68(6):927–33. https://doi.org/10.1093/cid/ciy574.

    Article  CAS  PubMed  Google Scholar 

  36. Romani L, Whitfeld MJ, Koroivueta J, Kama M, Wand H, Tikoduadua L, et al. Mass drug administration for scabies control in a population with endemic disease. N Engl J Med. 2015;373(24):2305–13. https://doi.org/10.1056/NEJMoa1500987.

    Article  CAS  PubMed  Google Scholar 

  37. Kearns TM, Speare R, Cheng AC, McCarthy J, Carapetis JR, Holt DC, et al. Impact of an Ivermectin mass drug administration on scabies prevalence in a remote Australian aboriginal community. PLoS Negl Trop Dis. 2015;9(10):e0004151. https://doi.org/10.1371/journal.pntd.0004151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lake SJ, Phelan SL, Engelman D, Sokana O, Nasi T, Boara D, et al. Protocol for a cluster-randomised non-inferiority trial of one versus two doses of ivermectin for the control of scabies using a mass drug administration strategy (the RISE study). BMJ Open. 2020;10(8):e037305. https://doi.org/10.1136/bmjopen-2020-037305.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Koch E, Clark JM, Cohen B, Meinking TL, Ryan WG, Stevenson A, et al. Management of head louse infestations in the United States-a literature review. Pediatr Dermatol. 2016;33(5):466–72. https://doi.org/10.1111/pde.12982.

    Article  PubMed  Google Scholar 

  40. Durand R, Bouvresse S, Berdjane Z, Izri A, Chosidow O, Clark JM. Insecticide resistance in head lice: clinical, parasitological and genetic aspects. Clin Microbiol Infect. 2012;18(4):338–44. https://doi.org/10.1111/j.1469-0691.2012.03806.x.

    Article  CAS  PubMed  Google Scholar 

  41. Baraka GT, Nyundo BA, Thomas A, Mwang’onde BJ, Kweka EJ. Susceptibility status of bedbugs (Hemiptera: Cimicidae) against Pyrethroid and organophosphate insecticides in Dar Es Salaam, Tanzania. J Med Entomol. 2020;57(2):524–8. https://doi.org/10.1093/jme/tjz173.

    Article  CAS  PubMed  Google Scholar 

  42. Kilpinen O, Kristensen M, Jensen KM. Resistance differences between chlorpyrifos and synthetic pyrethroids in Cimex lectularius population from Denmark. Parasitol Res. 2011;109(5):1461–4. https://doi.org/10.1007/s00436-011-2423-3.

    Article  PubMed  Google Scholar 

  43. Dang K, Doggett SL, Veera Singham G, Lee CY. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasit Vectors. 2017;10(1):318. https://doi.org/10.1186/s13071-017-2232-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klafke GM, Miller RJ, Tidwell JP, Thomas DB, Sanchez D, Feria Arroyo TP, et al. High-resolution melt (HRM) analysis for detection of SNPs associated with pyrethroid resistance in the southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Int J Parasitol Drugs Drug Resist. 2019;9:100–11. https://doi.org/10.1016/j.ijpddr.2019.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tucker NSG, Weeks ENI, Beati L, Kaufman PE. Prevalence and distribution of pathogen infection and permethrin resistance in tropical and temperate populations of Rhipicephalus sanguineus s.l. collected worldwide. Med Vet Entomol. 2020;35:147. https://doi.org/10.1111/mve.12479.

    Article  CAS  PubMed  Google Scholar 

  46. Abbas RZ, Colwell DD, Iqbal Z, Khan A. Acaricidal drug resistance in poultry red mite (Dermanyssus gallinae) and approaches to its management. Worlds Poult Sci J. 2014;70(1):113–24. https://doi.org/10.1017/S0043933914000105.

    Article  Google Scholar 

  47. Mullens BA, Velten RK, Hinkle NC, Kuney DR, Szijj CE. Acaricide resistance in northern fowl mite (Ornithonyssus sylviarum) populations on caged layer operations in Southern California. Poult Sci. 2004;83(3):365–74. https://doi.org/10.1093/ps/83.3.365.

    Article  CAS  PubMed  Google Scholar 

  48. Marangi M, Cafiero MA, Capelli G, Camarda A, Sparagano OA, Giangaspero A. Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae) susceptibility to some acaricides in field populations from Italy. Exp Appl Acarol. 2009;48(1–2):11–8. https://doi.org/10.1007/s10493-008-9224-0.

    Article  CAS  PubMed  Google Scholar 

  49. Mullens BA, Murillo AC, Zoller H, Heckeroth AR, Jirjis F, Flochlay-Sigognault A. Comparative in vitro evaluation of contact activity of fluralaner, spinosad, phoxim, propoxur, permethrin and deltamethrin against the northern fowl mite, Ornithonyssus sylviarum. Parasit Vectors. 2017;10(1):358. https://doi.org/10.1186/s13071-017-2289-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shoop WL. Ivermectin resistance. Parasitol Today. 1993;9(5):154–9. https://doi.org/10.1016/0169-4758(93)90136-4.

    Article  CAS  PubMed  Google Scholar 

  51. Wolstenholme AJ, Evans CC, Jimenez PD, Moorhead AR. The emergence of macrocyclic lactone resistance in the canine heartworm, Dirofilaria immitis. Parasitology. 2015;142(10):1249–59. https://doi.org/10.1017/s003118201500061x.

    Article  CAS  PubMed  Google Scholar 

  52. Osei-Atweneboana MY, Eng JK, Boakye DA, Gyapong JO, Prichard RK. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet. 2007;369(9578):2021–9. https://doi.org/10.1016/s0140-6736(07)60942-8.

    Article  PubMed  Google Scholar 

  53. Awadzi K, Attah SK, Addy ET, Opoku NO, Quartey BT, Lazdins-Helds JK, et al. Thirty-month follow-up of sub-optimal responders to multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol. 2004;98(4):359–70. https://doi.org/10.1179/000349804225003442.

    Article  CAS  PubMed  Google Scholar 

  54. Prichard RK, Geary TG. Perspectives on the utility of moxidectin for the control of parasitic nematodes in the face of developing anthelmintic resistance. Int J Parasitol Drugs Drug Resist. 2019;10:69–83. https://doi.org/10.1016/j.ijpddr.2019.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lekimme M, Farnir F, Marechal F, Losson B. Failure of injectable ivermectin to control psoroptic mange in cattle. Vet Rec. 2010;167(15):575–6. https://doi.org/10.1136/vr.c4906.

    Article  CAS  PubMed  Google Scholar 

  56. Lifschitz A, Fiel C, Steffan P, Cantón C, Muchiut S, Dominguez P, et al. Failure of ivermectin efficacy against Psoroptes ovis infestation in cattle: integrated pharmacokinetic-pharmacodynamic evaluation of two commercial formulations. Vet Parasitol. 2018;263:18–22. https://doi.org/10.1016/j.vetpar.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  57. van Mol W, De Wilde N, Casaert S, Chen Z, Vanhecke M, Duchateau L, et al. Resistance against macrocyclic lactones in Psoroptes ovis in cattle. Parasit Vectors. 2020;13(1):127. https://doi.org/10.1186/s13071-020-04008-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Doherty E, Burgess S, Mitchell S, Wall R. First evidence of resistance to macrocyclic lactones in Psoroptes ovis sheep scab mites in the UK. Vet Rec. 2018;182(4):106. https://doi.org/10.1136/vr.104657.

    Article  PubMed  Google Scholar 

  59. Sturgess-Osborne C, Burgess S, Mitchell S, Wall R. Multiple resistance to macrocyclic lactones in the sheep scab mite Psoroptes ovis. Vet Parasitol. 2019;272:79–82. https://doi.org/10.1016/j.vetpar.2019.07.007.

    Article  CAS  PubMed  Google Scholar 

  60. Chosidow O, Giraudeau B, Cottrell J, Izri A, Hofmann R, Mann SG, et al. Oral ivermectin versus malathion lotion for difficult-to-treat head lice. N Engl J Med. 2010;362(10):896–905. https://doi.org/10.1056/NEJMoa0905471.

    Article  CAS  PubMed  Google Scholar 

  61. Diatta G, Abat C, Sokhna C, Tissot-Dupont H, Rolain JM, Raoult D. Head lice probably resistant to ivermectin recovered from two rural girls in Dielmo, a village in Sine-Saloum, Senegal. Int J Antimicrob Agents. 2016;47(6):501–2. https://doi.org/10.1016/j.ijantimicag.2016.03.013.

    Article  CAS  PubMed  Google Scholar 

  62. Amanzougaghene N, Fenollar F, Diatta G, Sokhna C, Raoult D, Mediannikov O. Mutations in GluCl associated with field ivermectin-resistant head lice from Senegal. Int J Antimicrob Agents. 2018;52(5):593–8. https://doi.org/10.1016/j.ijantimicag.2018.07.005.

    Article  CAS  PubMed  Google Scholar 

  63. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol. 2010;40(8):563–72. https://doi.org/10.1016/j.ibmb.2010.05.008.

    Article  CAS  PubMed  Google Scholar 

  64. Andriantsoanirina V, Izri A, Botterel F, Foulet F, Chosidow O, Durand R. Molecular survey of knockdown resistance to pyrethroids in human scabies mites. Clin Microbiol Infect. 2014;20(2):O139–41. https://doi.org/10.1111/1469-0691.12334.

    Article  CAS  PubMed  Google Scholar 

  65. Aponte A, Penilla RP, Rodríguez AD, Ocampo CB. Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Trop. 2019;191:146–54. https://doi.org/10.1016/j.actatropica.2018.12.021.

    Article  CAS  PubMed  Google Scholar 

  66. Kotze AC, Hunt PW, Skuce P, von Samson-Himmelstjerna G, Martin RJ, Sager H, et al. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int J Parasitol Drugs Drug Resist. 2014;4(3):164–84. https://doi.org/10.1016/j.ijpddr.2014.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994;77(4):491–502. https://doi.org/10.1016/0092-8674(94)90212-7.

    Article  CAS  PubMed  Google Scholar 

  68. Roulet A, Puel O, Gesta S, Lepage JF, Drag M, Soll M, et al. MDR1-deficient genotype in collie dogs hypersensitive to the P-glycoprotein substrate ivermectin. Eur J Pharmacol. 2003;460(2–3):85–91. https://doi.org/10.1016/s0014-2999(02)02955-2.

    Article  CAS  PubMed  Google Scholar 

  69. Xu M, Molento M, Blackhall W, Ribeiro P, Beech R, Prichard R. Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog. Mol Biochem Parasitol. 1998;91(2):327–35. https://doi.org/10.1016/s0166-6851(97)00215-6.

    Article  CAS  PubMed  Google Scholar 

  70. Raza A, Kopp SR, Bagnall NH, Jabbar A, Kotze AC. Effects of in vitro exposure to ivermectin and levamisole on the expression patterns of ABC transporters in Haemonchus contortus larvae. Int J Parasitol Drugs Drug Resist. 2016;6(2):103–15. https://doi.org/10.1016/j.ijpddr.2016.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Maté L, Ballent M, Cantón C, Ceballos L, Lifschitz A, Lanusse C, et al. Assessment of P-glycoprotein gene expression in adult stage of Haemonchus contortus in vivo exposed to ivermectin. Vet Parasitol. 2018;264:1–7. https://doi.org/10.1016/j.vetpar.2018.10.011.

    Article  CAS  PubMed  Google Scholar 

  72. Pohl PC, Klafke GM, Carvalho DD, Martins JR, Daffre S, da Silva Vaz I Jr, et al. ABC transporter efflux pumps: a defense mechanism against ivermectin in Rhipicephalus (Boophilus) microplus. Int J Parasitol. 2011;41(13–14):1323–33. https://doi.org/10.1016/j.ijpara.2011.08.004.

    Article  CAS  PubMed  Google Scholar 

  73. Xu Z, Shi L, Peng J, Shen G, Wei P, Wu Q, et al. Analysis of the relationship between P-glycoprotein and abamectin resistance in Tetranychus cinnabarinus (Boisduval). Pestic Biochem Physiol. 2016;129:75–82. https://doi.org/10.1016/j.pestbp.2015.10.021.

    Article  CAS  PubMed  Google Scholar 

  74. Kim JH, Gellatly KJ, Lueke B, Kohler M, Nauen R, Murenzi E, et al. Detoxification of ivermectin by ATP binding cassette transporter C4 and cytochrome P450 monooxygenase 6CJ1 in the human body louse, pediculus humanus humanus. Insect Mol Biol. 2017;27:73. https://doi.org/10.1111/imb.12348.

    Article  CAS  PubMed  Google Scholar 

  75. Yoon KS, Strycharz JP, Baek JH, Sun W, Kim JH, Kang JS, et al. Brief exposures of human body lice to sublethal amounts of ivermectin over-transcribes detoxification genes involved in tolerance. Insect Mol Biol. 2011;20(6):687–99. https://doi.org/10.1111/j.1365-2583.2011.01097.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim JH, Moreau JA, Ali Y, Razo P, Hong KB, Yoon KS, et al. RNA interference validation of detoxification genes involved in ivermectin tolerance in Drosophila melanogaster. Insect Mol Biol. 2018;27(5):651–60. https://doi.org/10.1111/imb.12512.

    Article  CAS  PubMed  Google Scholar 

  77. Dooley LA, Froese EA, Chung YT, Burkman EJ, Moorhead AR, Ardelli BF. Host ABC transporter proteins may influence the efficacy of ivermectin and possibly have broader implications for the development of resistance in parasitic nematodes. Exp Parasitol. 2015;157:35–43. https://doi.org/10.1016/j.exppara.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  78. Mounsey KE, Dent JA, Holt DC, McCarthy J, Currie BJ, Walton SF. Molecular characterisation of a pH-gated chloride channel from Sarcoptes scabiei. Invert Neurosci. 2007;7(3):149–56. https://doi.org/10.1007/s10158-007-0050-6.

    Article  CAS  PubMed  Google Scholar 

  79. Blackhall WJ, Pouliot JF, Prichard RK, Beech RN. Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Exp Parasitol. 1998;90(1):42–8. https://doi.org/10.1006/expr.1998.4316.

    Article  CAS  PubMed  Google Scholar 

  80. Khan S, Nisar A, Yuan J, Luo X, Dou X, Liu F, et al. A whole genome re-sequencing based GWA analysis reveals candidate genes associated with Ivermectin resistance in Haemonchus contortus. Genes (Basel). 2020;11(4):367. https://doi.org/10.3390/genes11040367.

    Article  CAS  PubMed  Google Scholar 

  81. McCavera S, Rogers AT, Yates DM, Woods DJ, Wolstenholme AJ. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. Mol Pharmacol. 2009;75(6):1347–55. https://doi.org/10.1124/mol.108.053363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathog. 2017;13(10):e1006663. https://doi.org/10.1371/journal.ppat.1006663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lynagh T, Lynch JW. A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors. Int J Parasitol. 2010;40(13):1477–81. https://doi.org/10.1016/j.ijpara.2010.07.010.

    Article  CAS  PubMed  Google Scholar 

  84. Njue AI, Hayashi J, Kinne L, Feng XP, Prichard RK. Mutations in the extracellular domains of glutamate-gated chloride channel alpha3 and beta subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity. J Neurochem. 2004;89(5):1137–47. https://doi.org/10.1111/j.1471-4159.2004.02379.x.

    Article  CAS  PubMed  Google Scholar 

  85. Dent JA, Smith MM, Vassilatis DK, Avery L. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2000;97(6):2674–9. https://doi.org/10.1073/pnas.97.6.2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghosh R, Andersen EC, Shapiro JA, Gerke JP, Kruglyak L. Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Science. 2012;335(6068):574–8. https://doi.org/10.1126/science.1214318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Doyle SR, Bourguinat C, Nana-Djeunga HC, Kengne-Ouafo JA, Pion SDS, Bopda J, et al. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Negl Trop Dis. 2017;11(7):e0005816. https://doi.org/10.1371/journal.pntd.0005816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hernando G, Bouzat C. Caenorhabditis elegans neuromuscular junction: GABA receptors and ivermectin action. PloS One. 2014;9(4):e95072. https://doi.org/10.1371/journal.pone.0095072.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kane NS, Hirschberg B, Qian S, Hunt D, Thomas B, Brochu R, et al. Drug-resistant drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin. Proc Natl Acad Sci U S A. 2000;97(25):13949–54. https://doi.org/10.1073/pnas.240464697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kwon DH, Yoon KS, Clark JM, Lee SH. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch. Insect Mol Biol. 2010;19(4):583–91. https://doi.org/10.1111/j.1365-2583.2010.01017.x.

    Article  CAS  PubMed  Google Scholar 

  91. Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbić M, Tirry L, et al. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochem Mol Biol. 2012;42(7):455–65. https://doi.org/10.1016/j.ibmb.2012.03.002.

    Article  CAS  PubMed  Google Scholar 

  92. Mermans C, Dermauw W, Geibel S, Van Leeuwen T. A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones. Pest Manag Sci. 2017;73(12):2413–8. https://doi.org/10.1002/ps.4677.

    Article  CAS  PubMed  Google Scholar 

  93. Ilias A, Vassiliou VA, Vontas J, Tsagkarakou A. Molecular diagnostics for detecting pyrethroid and abamectin resistance mutations in Tetranychus urticae. Pestic Biochem Physiol. 2017;135:9–14. https://doi.org/10.1016/j.pestbp.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  94. Wang X, Wang R, Yang Y, Wu S, O'Reilly AO, Wu Y. A point mutation in the glutamate-gated chloride channel of Plutella xylostella is associated with resistance to abamectin. Insect Mol Biol. 2016;25(2):116–25. https://doi.org/10.1111/imb.12204.

    Article  CAS  PubMed  Google Scholar 

  95. Wang X, Puinean AM, Reilly AOO, Williamson MS, CLC S, Millar NS, et al. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms. Insect Biochem Mol Biol. 2017;86:50–7. https://doi.org/10.1016/j.ibmb.2017.05.006.

    Article  CAS  PubMed  Google Scholar 

  96. Carmichael SN, Bron JE, Taggart JB, Ireland JH, Bekaert M, Burgess ST, et al. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression. BMC Genomics. 2013;14:408. https://doi.org/10.1186/1471-2164-14-408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Messmer AM, Leong JS, Rondeau EB, Mueller A, Despins CA, Minkley DR, et al. A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate. Mar Genomics. 2018;40:45–57. https://doi.org/10.1016/j.margen.2018.03.005.

    Article  PubMed  Google Scholar 

  98. Besnier F, Kent M, Skern-Mauritzen R, Lien S, Malde K, Edvardsen RB, et al. Human-induced evolution caught in action: SNP-array reveals rapid amphi-atlantic spread of pesticide resistance in the salmon ecotoparasite Lepeophtheirus salmonis. BMC Genomics. 2014;15(1):937. https://doi.org/10.1186/1471-2164-15-937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liao CY, Xia WK, Feng YC, Li G, Liu H, Dou W, et al. Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor). Pestic Biochem Physiol. 2016;132:72–80. https://doi.org/10.1016/j.pestbp.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  100. Pavlidi N, Tseliou V, Riga M, Nauen R, Van Leeuwen T, Labrou NE, et al. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. Pestic Biochem Physiol. 2015;121:53–60. https://doi.org/10.1016/j.pestbp.2015.01.009.

    Article  CAS  PubMed  Google Scholar 

  101. Wang MY, Liu XY, Shi L, Liu JL, Shen GM, Zhang P, et al. Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval). Insect Sci. 2020;27(2):276–91. https://doi.org/10.1111/1744-7917.12637.

    Article  CAS  PubMed  Google Scholar 

  102. Chen LP, Wang P, Sun YJ, Wu YJ. Direct interaction of avermectin with epidermal growth factor receptor mediates the penetration resistance in drosophila larvae. Open Biol. 2016;6(4):150231. https://doi.org/10.1098/rsob.150231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Amanzougaghene N, Fenollar F, Nappez C, Ben-Amara A, Decloquement P, Azza S, et al. Complexin in ivermectin resistance in body lice. PLoS Genet. 2018;14(8):e1007569. https://doi.org/10.1371/journal.pgen.1007569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McNair CM. Ectoparasites of medical and veterinary importance: drug resistance and the need for alternative control methods. J Pharm Pharmacol. 2015;67(3):351–63. https://doi.org/10.1111/jphp.12368.

    Article  CAS  PubMed  Google Scholar 

  105. Fraser TA, Carver S, Martin AM, Mounsey K, Polkinghorne A, Jelocnik M. A Sarcoptes scabiei specific isothermal amplification assay for detection of this important ectoparasite of wombats and other animals. PeerJ. 2018;6:e5291. https://doi.org/10.7717/peerj.5291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rider SD Jr, Morgan MS, Arlian LG. Draft genome of the scabies mite. Parasit Vectors. 2015;8:585. https://doi.org/10.1186/s13071-015-1198-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Korhonen PK, Gasser RB, Ma G, Wang T, Stroehlein AJ, Young ND, et al. High-quality nuclear genome for Sarcoptes scabiei-a critical resource for a neglected parasite. PLoS Negl Trop Dis. 2020;14(10):e0008720. https://doi.org/10.1371/journal.pntd.0008720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate E. Mounsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mounsey, K.E., Harvey, R.J., Currie, B.J. (2023). Drug Resistance. In: Fischer, K., Chosidow, O. (eds) Scabies. Springer, Cham. https://doi.org/10.1007/978-3-031-26070-4_27

Download citation

Publish with us

Policies and ethics