Skip to main content
  • 563 Accesses

Abstract

Synthesis of reactive oxygen species (ROS) by specific NADPH oxidases (Nox) can serve both defense and differentiation signalling roles in animals and plants. Fungi have three subfamilies of NADPH oxidase, NoxA, NoxB and NoxC. NoxA and NoxB have a structure very similar to the human gp91phox whereas NoxC has a Ca2+ binding motif similar to that found in the human Nox5 and plant Rboh families of NADPH oxidases. Specific isoforms of Nox have been shown by genetic analysis to be required for various fungal physiological processes and cellular differentiations, including development of sexual fruiting bodies, ascospore germination, hyphal defense, hyphal growth in both mutualistic and antagonistic plant-fungal interactions.

A survey of 65 fungal genomes identified up to four Nox genes in some fungal species, reflecting the diverse morphologies and life cycles of fungal species. The presence of nox genes in fungi from the Chytridiomycota to Ascomycota suggests that Nox is an ancestral enzyme for fungi. This chapter provides an overview of our current knowledge of fungal NADPH oxidases, including Nox distribution in the fungal kingdom, Nox structure and regulation, and known biological functions of this important group of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Softcover Book
USD 299.99
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  2. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Article  CAS  PubMed  Google Scholar 

  3. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748):79–82

    Article  CAS  PubMed  Google Scholar 

  4. Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  5. Auh CK, Murphy TM (1995) Plasma membrane redox enzyme Is involved in the synthesis of O2 and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiol 107(4):1241–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23(4):441–450

    Article  CAS  PubMed  Google Scholar 

  7. Simon-Plas F, Elmayan T, Blein J-P (2002) The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31(2):137–147

    Article  CAS  PubMed  Google Scholar 

  8. Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99(1):517–522

    Google Scholar 

  9. Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O et al (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15(3):706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287:246–256

    Article  Google Scholar 

  11. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL et al (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22(11):2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8(4):397–403

    Article  CAS  PubMed  Google Scholar 

  13. Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S et al (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26(3):1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13(3):111–118

    Article  CAS  PubMed  Google Scholar 

  15. Lara-Ortíz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50(4):1241–1255

    Article  PubMed  Google Scholar 

  16. Malagnac F, Lalucque H, Lepère G, Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41(11):982–997

    Article  CAS  PubMed  Google Scholar 

  17. Haedens V, Malagnac F, Silar P (2005) Genetic control of an epigenetic cell degeneration syndrome in Podospora anserina. Fungal Genet Biol 42(6):564–577

    Article  CAS  PubMed  Google Scholar 

  18. Silar P (2005) Peroxide accumulation and cell death in filamentous fungi induced by contact with a contestant. Mycol Res 109(Pt 2):137–149

    Article  CAS  PubMed  Google Scholar 

  19. Brun S, Malagnac F, Bidard F, Lalucque H, Silar P (2009) Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 74(2):480–496

    Article  CAS  PubMed  Google Scholar 

  20. Lehr NA, Wang Z, Li N, Hewitt DA, López-Giráldez F, Trail F et al (2014) Gene expression differences among three Neurospora species reveal genes required for sexual reproduction in Neurospora crassa. PLoS One 9(10):e110398

    Article  PubMed  PubMed Central  Google Scholar 

  21. Coppin E, Berteaux-Lecellier V, Bidard F, Brun S, Ruprich-Robert G, Espagne E et al (2012) Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body. PLoS One 7(5):e37488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gautier V, Tong LCH, Nguyen T-S, Debuchy R, Silar P (2018) PaPro1 and IDC4, two genes controlling stationary phase, sexual development and cell degeneration in Podospora anserina. J Fungi (Basel) 4(3)

    Google Scholar 

  23. Kayano Y, Tanaka A, Akano F, Scott B, Takemoto D (2013) Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus Epichloë festucae. Fungal Genet Biol 56:87–97

    Article  CAS  PubMed  Google Scholar 

  24. Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31(11):1287–1312

    Article  CAS  PubMed  Google Scholar 

  25. Cano-Domínguez N, Álvarez-Delfín K, Hansberg W, Aguirre J (2008) The NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell 7(8):1352–1361

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dirschnabel DE, Nowrousian M, Cano-Domínguez N, Aguirre J, Teichert I, Kück U (2014) New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora. Genetics 196:729–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kicka S, Silar P (2004) PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina. Genetics 166(3):1241–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kicka S, Bonnet C, Sobering AK, Ganesan LP, Silar P (2006) A mitotically inheritable unit containing a MAP kinase module. Proc Natl Acad Sci U S A 103(36):13445–13450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silar P, Haedens V, Rossignol M, Lalucque H (1999) Propagation of a novel cytoplasmic, infectious and deleterious determinant is controlled by translational accuracy in Podospora anserina. Genetics 151(1):87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Read ND, Goryachev AB, Lichius A (2012) The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. Fungal Biol Rev 26:1–11

    Article  Google Scholar 

  31. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic association. Plant Cell 18:1052–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lambou K, Malagnac F, Barbisan C, Tharreau D, Lebrun MH, Silar P (2008) The crucial role during ascospore germination of the Pls1 tetraspanin in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes. Eukaryot Cell 7:1809–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Egan M, Wang Z-Y, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 104(July 10):11772–11777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ryder LS, Dagdas YF, Mentlak TA, Kershaw MJ, Thornton CR, Schuster M et al (2013) NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc Natl Acad Sci U S A 110(8):3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takemoto D, Tanaka A, Scott B (2006) A p67phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18(10):2807–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 21(6):808–819

    Article  PubMed  Google Scholar 

  37. Semighini CP, Harris SD (2008) Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 179(4):1919–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Christensen MJ, Bennett RJ, Schmid J (2002) Growth of Epichloë/Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106:93–106

    Article  Google Scholar 

  39. Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT et al (2008) Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93

    Article  PubMed  Google Scholar 

  40. Tan YY, Spiering MJ, Scott V, Lane GA, Christensen MJ, Schmid J (2001) In planta regulation of extension of an endophytic fungus and maintenance of high metabolic rates in its mycelium in the absence of apical extension. Appl Environ Microbiol 67(12):5377–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Voisey CR (2010) Intercalary growth in hyphae of filamentous fungi. Fungal Biol Rev 24:123–131

    Article  Google Scholar 

  42. Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 68(5):1165–1178

    Article  CAS  PubMed  Google Scholar 

  43. Becker Y, Eaton CJ, Brasell E, May KJ, Becker M, Hassing B et al (2015) The fungal cell wall integrity MAPK cascade is crucial for hyphal network formation and maintenance of restrictive growth of Epichloë festucae in symbiosis with Lolium perenne. Mol Plant Microbe Interact 28:69–85

    Article  PubMed  Google Scholar 

  44. Tanaka A, Cartwright GM, Saikia S, Kayano Y, Takemoto D, Kato M et al (2013) ProA, a transcriptional regulator of fungal fruiting body development, regulates leaf hyphal network development in the Epichloë festucae-Lolium perenne symbiosis. Mol Microbiol 90(3):551–568

    Article  CAS  PubMed  Google Scholar 

  45. Becker M, Becker Y, Green K, Scott B (2016) The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. New Phytol 211:240–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noorifar N, Savoian MS, Ram A, Lukito Y, Hassing B, Weikert TW et al (2021) Chitin deacetylases are required for Epichloë festucae endophytic cell wall remodeling during establishment of a mutualistic symbiotic interaction with Lolium perenne. Mol Plant Microbe Interact 34(10):1181–1192

    Article  CAS  PubMed  Google Scholar 

  47. Giesbert S, Schurg T, Scheele S, Tudzynski P (2008) The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea. Mol Plant Pathol 9(3):317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Siegmund U, Marschall R, Tudzynski P (2015) BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea. Mol Microbiol 95:988–1005

    Article  CAS  PubMed  Google Scholar 

  49. Kim H-j, Chen C, Kabbage M, Dickman MB (2011) Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Appl Environ Microbiol 77(21):7721–7729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang SL, Chung KR (2013) Similar and distinct roles of NADPH oxidase components in the tangerine pathotype of Alternaria alternata. Mol Plant Pathol 14(6):543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang L, Mogg C, Walkowiak S, Joshi M, Subramaniam R (2014) Characterization of NADPH oxidase genes NoxA and NoxB in Fusarium graminearum. Can J Plant Pathol 36:12–21

    Article  Google Scholar 

  52. Zhang C, Lin Y, Wang J, Wang Y, Chen M, Norvienyeku J et al (2016) FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum. FEMS Microbiol Lett 363(1):fnv223

    Article  PubMed  Google Scholar 

  53. Hernández-Oñate MA, Esquivel-Naranjo EU, Mendoza-Mendoza A, Stewart A, Herrera-Estrella AH (2012) An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc Natl Acad Sci U S A 109(37):14918–14923

    Article  PubMed  PubMed Central  Google Scholar 

  54. Turrà D, El Ghalid M, Rossi F, Di Pietro A (2015) Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527(7579):521–524

    Article  PubMed  Google Scholar 

  55. Nordzieke DE, Fernandes TR, El Ghalid M, Turrà D, Di Pietro A (2019) NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. New Phytol 224(4):1600–1612

    Article  CAS  PubMed  Google Scholar 

  56. Pick E (2020) Cell-free NADPH oxidase activation assay: A triumph of reductionism. 3rd ed. Neutrophil methods and protocols. Springer, New York

    Google Scholar 

  57. Diebold BA, Bokoch GM (2001) Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2(3):211–215

    Article  CAS  PubMed  Google Scholar 

  58. Groemping Y, Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386(Pt 3):401–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076

    Article  CAS  PubMed  Google Scholar 

  60. Lewit-Bentley A, Rety S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10(6):637–643

    Article  CAS  PubMed  Google Scholar 

  61. Rinnerthaler M, Buttner S, Laun P, Heeren G, Felder TK, Klinger H et al (2012) Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc Natl Acad Sci U S A 109(22):8658–8663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rossi DCP, Gleason JE, Sanchez H, Schatzman SS, Culbertson EM, Johnson CJ et al (2017) Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis. PLoS Pathog 13(12):e1006763

    Article  PubMed  PubMed Central  Google Scholar 

  63. Segal AW, West I, Wientjes F, Nugent JH, Chavan AJ, Haley B et al (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15(7):356–363

    Article  CAS  PubMed  Google Scholar 

  65. Hoyal CR, Gutierrez A, Young BM, Catz SD, Lin JH, Tsichlis PN et al (2003) Modulation of p47phox activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc Natl Acad Sci U S A 100(9):5130–5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Inanami O, Johnson JL, McAdara JK, El-Benna J, Faust LR, Newburger PE et al (1998) Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation of p47PHOX on serine 303 or 304. J Biol Chem 273(16):9539–9543

    Article  CAS  PubMed  Google Scholar 

  67. Leto TL, Adams AG, de Mendez I (1994) Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91(22):10650–10654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sumimoto H, Kage Y, Nunoi H, Sasaki H, Nose T, Fukumaki Y et al (1994) Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A 91(12):5345–5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heyworth PG, Bohl BP, Bokoch GM, Curnutte JT (1994) Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. J Biol Chem 269(49):30749–30752

    Article  CAS  PubMed  Google Scholar 

  70. Ago T, Takeya R, Hiroaki H, Kuribayashi F, Ito T, Kohda D et al (2001) The PX domain as a novel phosphoinositide-binding module. Biochem Biophys Res Commun 287(3):733–738

    Article  CAS  PubMed  Google Scholar 

  71. Kanai F, Liu H, Field SJ, Akbary H, Matsuo T, Brown GE et al (2001) The PX domains of p47phox and p40phox bind to lipid products of PI3K. Nat Cell Biol 3(7):675–678

    Article  CAS  PubMed  Google Scholar 

  72. Lacaze I, Lalucque H, Siegmund U, Silar P, Brun S (2015) Identification of NoxD/Pro41 as the homologue of the p22phox NADPH oxidase subunit in fungi. Mol Microbiol 95:1006–1024

    Article  CAS  PubMed  Google Scholar 

  73. Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C et al (2007) The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 64(4):923–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meijles DN, Howlin BJ, Li JM (2012) Consensus in silico computational modelling of the p22phox subunit of the NADPH oxidase. Comput Biol Chem 39:6–13

    Article  CAS  PubMed  Google Scholar 

  75. Siegmund U, Heller J, van Kan JA, Tudzynski P (2013) The NADPH oxidase complexes in Botrytis cinerea: evidence for a close association with the ER and the tetraspanin Pls1. PLoS One 8(2):e55879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scott B (2015) Conservation of fungal and animal nicotinamide adenine dinucleotide phosphate oxidase complexes. Mol Microbiol 95(6):910–913

    Article  CAS  PubMed  Google Scholar 

  77. Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A et al (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci U S A 108(7):2861–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boyce KJ, Hynes MJ, Andrianopoulos A (2003) Control of morphogenesis and actin localization by the Penicillium marneffei RAC homolog. J Cell Sci 116(Pt 7):1249–1260

    Article  CAS  PubMed  Google Scholar 

  79. Chen C, Dickman MB (2004) Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signalling pathways. Mol Microbiol 51(5):1493–1507

    Article  CAS  PubMed  Google Scholar 

  80. Paduch M, Jelen F, Otlewski J (2001) Structure of small G proteins and their regulators. Acta Biochim Pol 48:829–850

    Article  CAS  PubMed  Google Scholar 

  81. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 6(4):899–907

    Article  CAS  PubMed  Google Scholar 

  82. Kayano Y, Tanaka A, Takemoto D (2018) Two closely related Rho GTPases, Cdc42 and RacA, of the endophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant. PLoS Pathog 14:e1006840

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kamiguti AS, Serrander L, Lin K, Harris RJ, Cawley JC, Allsup DJ et al (2005) Expression and activity of NOX5 in the circulating malignant B cells of hairy cell leukemia. J Immunol 175(12):8424–8430

    Article  CAS  PubMed  Google Scholar 

  84. Fu C, Ao J, Dettmann A, Seiler S, Free SJ (2014) Characterization of the Neurospora crassa cell fusion proteins, HAM-6, HAM-7, HAM-8, HAM-9, HAM-10, AMPH-1 and WHI-2. PLoS One 9(10):e107773

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ikeda S, Yamaoka-Tojo M, Hilenski L, Patrushev NA, Anwar GM, Quinn MT et al (2005) IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2. Arterioscler Thromb Vasc Biol 25(11):2295–2300

    Article  CAS  PubMed  Google Scholar 

  86. Erickson JW, Cerione RA, Hart MJ (1997) Identification of an actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase. J Biol Chem 272(39):24443–24447

    Article  CAS  PubMed  Google Scholar 

  87. Adachi M, Kawasaki A, Nojima H, Nishida E, Tsukita S (2014) Involvement of IQGAP family proteins in the regulation of mammalian cell cytokinesis. Genes Cells 19(11):803–820

    Article  CAS  PubMed  Google Scholar 

  88. Briggs MW, Sacks DB (2003) IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep 4(6):571–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Faix J, Clougherty C, Konzok A, Mintert U, Murphy J, Albrecht R et al (1998) The IQGAP-related protein DGAP1 interacts with Rac and is involved in the modulation of the F-actin cytoskeleton and control of cell motility. J Cell Sci 111(Pt 20):3059–3071

    Article  CAS  PubMed  Google Scholar 

  90. Wendland J, Philippsen P (2002) An IQGAP-related protein, encoded by AgCYK1, is required for septation in the filamentous fungus Ashbya gossypii. Fungal Genet Biol 37(1):81–88

    Article  CAS  PubMed  Google Scholar 

  91. Marschall R, Tudzynski P (2016) BcIqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development in Botrytis cinerea. Mol Microbiol 101(2):281–298

    Article  CAS  PubMed  Google Scholar 

  92. Cano-Dominguez N, Bowman B, Peraza-Reyes L, Aguirre J (2019) Neurospora crassa NADPH oxidase NOX-1 Is localized in the vacuolar system and the plasma membrane. Front Microbiol 10:1825

    Article  PubMed  PubMed Central  Google Scholar 

  93. Masloff S, Pöggeler S, Kück U (1999) The pro1+ gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics 152(1):191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Steffens EK, Becker K, Krevet S, Teichert I, Kück U (2016) Transcription factor PRO1 targets genes encoding conserved components of fungal developmental signaling pathways. Mol Microbiol 102(5):792–809

    Article  CAS  PubMed  Google Scholar 

  95. Lalucque H, Silar P (2003) NADPH oxidase: an enzyme for multicellularity? Trends Microbiol 11(1):9–12

    Article  CAS  PubMed  Google Scholar 

  96. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274(35):25051–25060

    Article  CAS  PubMed  Google Scholar 

  97. Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K et al (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19(12):4022–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Butty AC, Perrinjaquet N, Petit A, Jaquenoud M, Segall JE, Hofmann K et al (2002) A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J 21(7):1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sumimoto H, Kamakura S, Ito T (2007) Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE 2007(401):re6

    Article  PubMed  Google Scholar 

  100. Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15(2):247–254

    Article  CAS  PubMed  Google Scholar 

  101. Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97(10):967–974

    Article  CAS  PubMed  Google Scholar 

  102. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711

    Article  CAS  PubMed  Google Scholar 

  103. Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476(1–2):52–54

    Article  CAS  PubMed  Google Scholar 

  104. Fujino G, Noguchi T, Takeda K, Ichijo H (2006) Thioredoxin and protein kinases in redox signaling. Semin Cancer Biol 16(6):427–435

    Article  CAS  PubMed  Google Scholar 

  105. Waring P (2005) Redox active calcium ion channels and cell death. Arch Biochem Biophys 434(1):33–42

    Article  CAS  PubMed  Google Scholar 

  106. Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P et al (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438(7070):1013–1016

    Article  CAS  PubMed  Google Scholar 

  107. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446

    Article  CAS  PubMed  Google Scholar 

  108. Lardy B, Bof M, Aubry L, Paclet MH, Morel F, Satre M et al (2005) NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochim Biophys Acta 1744(2):199–212

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Scott .

Editor information

Editors and Affiliations

Glossary

Ascogonium (plural ascogonia)

Female sexual organ in ascomycetous fungus from which asci develop.

Ascospore

A sexual spore that develops within an ascus in ascomycetous fungi.

Ascus (plural asci)

A sac like structure from which sexual spores (ascospores) develop.

Cleistothecium (plural cleistothecia)

A globose, closed fruiting body (ascocarp) from which ascospores develop and are released.

Conidiation

A biological process in which filamentous fungi reproduce asexually from spores.

Peridium

Cell wall of ascomata comprised of densely woven hyphae.

Perithecium

A round or flask shaped fruiting body with a pore through which ascospores are discharged.

Sclerotium

A persistent, vegetative, resting stage of certain fungi.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takemoto, D., Scott, B. (2023). NADPH Oxidases in Fungi. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_25

Download citation

Publish with us

Policies and ethics