Skip to main content

Discovery and Functional Analysis of the Single-Celled Yeast NADPH Oxidase, Yno1

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure

Abstract

In this chapter, we describe the discovery of the NADPH oxidase gene and protein of the single-celled yeast Saccharomyces cerevisiae, Yno1. This enzyme was characterized with respect to mechanism of action, subcellular location, regulation of gene expression, and physiological function. Yno1 is not involved in defense and is not highly expressed in vegetatively growing cells. However, it is expressed in diverse stress situations. The signaling substance produced by Yno1 in conjunction with the superoxide dismutase Sod1, hydrogen peroxide, consequently leads through a change in the expression of target genes to the modulation of an adaptive cellular response. An example is the formation of pseudohyphae enabling invasive growth of the yeast cells, which is believed to aid in the utilization of new nutrients. The major role of Yno1 is in the switch of the mode of growth from vegetative budding to the formation of pseudohyphae, which are elongated chains of cells. Further examples that are described in this chapter are the response to osmotic stress and mating. All these pathways have in common that they exit the regular cell cycle and are associated with in parts enormous changes in cell morphology. This is accomplished involving a change in the structure of the actin cytoskeleton. Yno1 was shown to directly modulate the actin cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Softcover Book
USD 299.99
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

AMP-dependent kinase

BLAST:

Basic Local Alignment Search Tool

DEPMPO:

5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide

DHE:

Dihydroethidium

DPI :

Diphenyleneiodonium chloride

ERAD:

Endoplasmic reticulum-associated protein degradation

ESR:

Electron spin resonance

GEF:

Guanine nucleotide exchange factor

IMR:

Integrative membrane reductase

MAPK:

Mitogen activated protein kinase

MAPKKK:

Mitogen activated protein kinase kinase kinase

NOX:

NADPH oxidase

NPF:

Nucleation promoting factor

PAK :

p21 activated kinase

PCR:

Polymerase chain reaction

PKA:

Protein kinase A

PKA pathway:

RAS-cAMP-protein kinase A pathway

PPP:

Pentose phosphate pathway

RBD:

Ras binding domain

WASP :

Wiskott Aldrich syndrome protein

References

  1. Laun P, Pichova A, Madeo F et al (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173

    Article  CAS  PubMed  Google Scholar 

  2. Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heeren G, Jarolim S, Laun P et al (2004) The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway. FEMS Yeast Res 5:157–167

    Article  CAS  PubMed  Google Scholar 

  4. Flury U, Mahler HR, Feldman F (1974) A novel respiration-deficient mutant of Saccharomyces cerevisiae. I. Preliminary characterization of phenotype and mitochondrial inheritance. J Biol Chem 249:6130–6137

    Article  CAS  PubMed  Google Scholar 

  5. Dancis A, Klausner RD, Hinnebusch AG et al (1990) Genetic-evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shatwell KP, Dancis A, Cross AR et al (1996) The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271:14240–14244

    Article  CAS  PubMed  Google Scholar 

  7. Yun CW, Bauler M, Moore RE et al (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223

    Article  CAS  PubMed  Google Scholar 

  8. Georgatsou E, Alexandraki D (1994) Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14:3065–3073

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sickmann A, Reinders J, Wagner Y et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huh WK, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  11. De Freitas JM, Kim JH, Poynton H et al (2004) Exploratory and confirmatory gene expression profiling of mac1Δ. J Biol Chem 279:4450–4458

    Article  PubMed  Google Scholar 

  12. Rinnerthaler M, Buttner S, Laun P et al (2012) Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc Natl Acad Sci USA 109:8658–8663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wiederhold E, Gandhi T, Permentier HP et al (2009) The yeast vacuolar membrane proteome. Mol Cell Proteomics 8:380–392

    Article  CAS  PubMed  Google Scholar 

  14. Klinger H, Rinnerthaler M, Lam YT et al (2010) Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 45:533–542

    Article  CAS  PubMed  Google Scholar 

  15. Brun S, Malagnac F, Bidard F et al (2009) Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 74:480–496

    Article  CAS  PubMed  Google Scholar 

  16. Lalucque H, Silar P (2003) NADPH oxidase: an enzyme for multicellularity? Trends Microbiol 11:9–12

    Article  CAS  PubMed  Google Scholar 

  17. Reddi AR, Culotta VC (2013) SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 152:224–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rajmohan R, Meng L, Yu SJ et al (2006) WASP suppresses the growth defect of Saccharomyces cerevisiae las17Δ strain in the presence of WIP. Biochem Biophys Res Commun 342:529–536

    Article  CAS  PubMed  Google Scholar 

  19. Block K, Gorin Y, Abboud HE (2009) Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci USA 106:14385–14390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hilenski LL, Clempus RE, Quinn MT et al (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:677–683

    Article  CAS  PubMed  Google Scholar 

  21. Auer S, Rinnerthaler M, Bischof J et al (2017) The human NADPH oxidase, Nox4, regulates cytoskeletal organization in two cancer cell lines, HepG2 and SH-SY5Y. Front Oncol 7

    Google Scholar 

  22. McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    Article  CAS  PubMed  Google Scholar 

  23. Medinas DB, Rozas P, Traub FM et al (2018) Endoplasmic reticulum stress leads to accumulation of wild-type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 115:8209–8214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’brien KM, Dirmeier R, Engle M et al (2004) Mitochondrial protein oxidation in yeast mutants lacking manganese- (MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD)—Evidence that MnSOD and CuZnSOD have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage. J Biol Chem 279:51817–51827

    Article  PubMed  Google Scholar 

  25. Montllor-Albalate C, Kim H, Jonke AP et al (2021) Sod1 integrates oxygen availability to redox regulate NADPH production and the thiol redoxome. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2023328119

  26. Liochev SI, Fridovich I (1999) Superoxide and iron: Partners in crime. IUBMB Life 48:157–161

    Article  CAS  PubMed  Google Scholar 

  27. Montllor-Albalate C, Colin AE, Chandrasekharan B et al (2019) Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biol 21

    Google Scholar 

  28. Rhee SG, Kang SW, Jeong W et al (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    Article  CAS  PubMed  Google Scholar 

  29. Moriya H, Johnston M (2004) Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc Natl Acad Sci USA 101:1572–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aung-Htut MT, Ayer A, Breitenbach M et al (2012) Oxidative stresses and ageing. Subcell Biochem 57:13–54

    Article  CAS  PubMed  Google Scholar 

  31. Leadsham JE, Sanders G, Giannaki S et al (2013) Loss of cytochrome c oxidase promotes RAS-dependent ROS production from the ER resident NADPH oxidase, Yno1p, in yeast. Cell Metab 18:279–286

    Article  CAS  PubMed  Google Scholar 

  32. Rossi DCP, Gleason JE, Sanchez H et al (2017) Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis. PLoS Pathog 13

    Google Scholar 

  33. Magnani F, Nenci S, Millana Fananas E et al (2017) Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci U S A 114:6764–6769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Magnani F, Mattevi A (2019) Structure and mechanisms of ROS generation by NADPH oxidases. Curr Opin Struct Biol 59:91–97

    Article  CAS  PubMed  Google Scholar 

  35. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  36. Weber M, Basu S, Gonzalez B et al (2021) Actin cytoskeleton regulation by the yeast NADPH oxidase Yno1p impacts processes controlled by MAPK pathways. Antioxidants 10

    Google Scholar 

  37. Grissa I, Bidard F, Grognet P et al (2010) The Nox/ferric reductase/ferric reductase-like families of eumycetes. Fungal Biol 114:766–777

    Article  CAS  PubMed  Google Scholar 

  38. Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: Diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076

    Article  CAS  PubMed  Google Scholar 

  39. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mishra M, Huang J, Balasubramanian MK (2014) The yeast actin cytoskeleton. FEMS Microbiol Rev 38:213–227

    Article  CAS  PubMed  Google Scholar 

  41. Evangelista M, Blundell K, Longtine MS et al (1997) Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276:118–122

    Article  CAS  PubMed  Google Scholar 

  42. Wu C, Lytvyn V, Thomas DY et al (1997) The phosphorylation site for Ste20p-like protein kinases is essential for the function of myosin-I in yeast. J Biol Chem 272:30623–30626

    Article  CAS  PubMed  Google Scholar 

  43. Dalle-Donne I, Carini M, Vistoli G et al (2007) Actin Cys374 as a nucleophilic target of alpha,beta-unsaturated aldehydes. Free Radic Biol Med 42:583–598

    Article  CAS  PubMed  Google Scholar 

  44. Hung RJ, Pak CW, Terman JR (2011) Direct redox regulation of F-actin assembly and disassembly by Mical. Science 334:1710–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valdivia A, Duran C, San Martin A (2015) The role of Nox-mediated oxidation in the regulation of cytoskeletal dynamics. Curr Pharm Des 21:6009–6022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hillenmeyer ME, Fung E, Wildenhain J et al (2008) The chemical genomic portrait of yeast: Uncovering a phenotype for all genes. Science 320:362–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peterson JR, Bickford LC, Morgan D et al (2004) Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 11:747–755

    Article  CAS  PubMed  Google Scholar 

  48. Sagot I, Pinson B, Salin B et al (2006) Actin bodies in yeast quiescent cells: an immediately available actin reserve? Mol Biol Cell 17:4645–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vasicova P, Lejskova R, Malcova I et al (2015) The stationary-phase cells of Saccharomyces cerevisiae display dynamic actin filaments required for processes extending chronological life span. Mol Cell Biol 35:3892–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Greslehner G (2016) Diploma thesis: Construction of a lacZ reporter system for measuring the activity of the promoter of YNO1, encoding a recently discovered yeast NADPH oxidase. University of Salzburg, Salzburg

    Google Scholar 

  51. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gimeno CJ, Ljungdahl PO, Styles CA et al (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    Article  CAS  PubMed  Google Scholar 

  53. Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Res 1773:1311–1340

    Article  CAS  Google Scholar 

  54. Park HO, Bi E (2007) Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71:48–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lagrassa TJ, Ungermann C (2005) The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. J Cell Biol 168:401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sprague GF, Blair LC, Thorner J (1983) Cell-interactions and regulation of cell type in the yeast Saccharomyces cerevisiae. Annu Rev Microbiol 37:623–660

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell AP (1998) Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1:687–692

    Article  CAS  PubMed  Google Scholar 

  58. Lo HJ, Kohler JR, Didomenico B et al (1997) Nonfilamentous C-albicans mutants are avirulent. Cell 90:939–949

    Article  CAS  PubMed  Google Scholar 

  59. Lorenz MC, Cutler NS, Heitman J (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11:183–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985

    Article  CAS  PubMed  Google Scholar 

  61. Ryan O, Shapiro RS, Kurat CF et al (2012) Global gene deletion analysis exploring yeast filamentous growth. Science 337:1353–1356

    Article  CAS  PubMed  Google Scholar 

  62. Shively CA, Eckwahl MJ, Dobry CJ et al (2013) Genetic networks inducing invasive growth in Saccharomyces cerevisiae identified through systematic genome-wide overexpression. Genetics 193:1297+

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Palecek SP, Parikh AS, Kron SJ (2000) Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics 156:1005–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bardwell L (2006) Mechanisms of MAPK signalling specificity. Biochem Soc Trans 34:837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gimeno CJ, Ljungdahl PO, Styles CA et al (1992) Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth—regulation by starvation and Ras. Cell 68:1077–1090

    Article  CAS  PubMed  Google Scholar 

  66. Saito H (2010) Regulation of cross-talk in yeast MAPK signaling pathways. Curr Opin Microbiol 13:677–68367

    Article  CAS  PubMed  Google Scholar 

  67. Farah ME, Amberg DC (2007) Conserved actin cysteine residues are oxidative stress sensors that can regulate cell death in yeast. Mol Biol Cell 18:1359–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kowalewski GP, Wildeman AS, Bogliolo S et al (2021) Cdc42 regulates reactive oxygen species production in the pathogenic yeast Candida albicans. J Biol Chem 297

    Google Scholar 

  69. Cullen PJ, Sabbagh W, Graham E et al (2004) A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Gene Dev 18:1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zaman S, Lippman SI, Zhao X et al (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    Article  CAS  PubMed  Google Scholar 

  71. Lechler T, Jonsdottir GA, Klee SK et al (2001) A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J Cell Biol 155:261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lechler T, Shevchenko A, Li R (2000) Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 148:363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Evangelista M, Pruyne D, Amberg DC et al (2002) Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 4:32–41

    Article  CAS  PubMed  Google Scholar 

  74. Chant J, Pringle JR (1995) Patterns of Bud-Site Selection in the Yeast Saccharomyces cerevisiae. J Cell Biol 129:751–765

    Article  CAS  PubMed  Google Scholar 

  75. Vadaie N, Dionne H, Akajagbor DS et al (2008) Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J Cell Biol 181:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adhikari H, Vadaie N, Chow J et al (2015) Role of the unfolded protein response in regulating the mucin-dependent filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 35:1414–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work presented here was supported by grant P26713 of the Austrian Science Fund FWF to M.B., P33511 of the FWF (to M.R.), GM098629 of the NIH, NIGMS to P.J.C. and 67985971 of the RVO and MEYS CR (8J20AT023) to J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Breitenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Breitenbach, M. et al. (2023). Discovery and Functional Analysis of the Single-Celled Yeast NADPH Oxidase, Yno1. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_24

Download citation

Publish with us

Policies and ethics