Skip to main content

The NADPH Oxidase Activator p67phox and Its Related Proteins

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure
  • 510 Accesses

Abstract

The Nox family NADPH oxidases can be divided into two groups based on the presence or absence of the Ca2+-binding EF-hand motif in the N-terminal cytoplasmic region. Members of the former group can be activated via direct interaction with Ca2+, the cytosolic concentration of which is elevated upon cell stimulation. On the other hand, activation machineries for EF-hand motif-deficient oxidases, which have evolved in animals and fungi, consist of the small GTPase Rac and its binding partner such as p67phox and its homologous proteins. The EF-hand-free phagocyte oxidase Nox2, dormant in resting cells, becomes activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants, thereby playing a crucial role in host defense. In this process, the essential Nox2 activator p67phox translocates via collaboration with its constitutively-binding proteins p47phox and p40phox from the cytosol to the phagosomal membrane, and interacts there with independently-recruited, GTP-bound Rac to induce a conformational change of Nox2 for superoxide production. Similarly, the p67phox-related proteins NoxA1 and NoxR associate with Rac–GTP to activate the non-phagocytic oxidase Nox1 and the fungal oxidases NoxA and NoxB, respectively. Here we describe how p67phox as well as its homologues functions in activation of EF-hand-independent oxidases at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Softcover Book
USD 299.99
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  2. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  3. Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  CAS  PubMed  Google Scholar 

  4. Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11:2607–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Magnani F, Nenci S, Millana Fananas E, Ceccon M, Romero E, Fraaije MW, Mattevi A (2017) Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci U S A 114:6764–6769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hajjar C, Cherrier MV, Mirandela GD, Petit-Hartlein I, Stasia MJ, Fontecilla-Camps JC, Fieschi F, Dupuy J (2017) The NOX family of proteins is also present in bacteria. MBio 8:e01487–e01417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miles JA, Egan JL, Fowler JA, Machattou P, Millard AD, Perry CJ, Scanlan DJ, Taylor PC (2021) The evolutionary origins of peroxynitrite signalling. Biochem Biophys Res Commun 580:107–112

    Article  CAS  PubMed  Google Scholar 

  8. Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286:13304–13313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ueyama T, Sakuma M, Ninoyu Y, Hamada T, Dupuy C, Geiszt M, Leto TL, Saito N (2015) The extracellular A-loop of dual oxidases affects the specificity of reactive oxygen species release. J Biol Chem 290:6495–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun J (2020) Structure of mouse DUOX1-DUOXA1 provide mechanistic insights into enzyme activation and regulation. Nat Struct Mol Biol 27:1086–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 280:23328–23339

    Article  CAS  PubMed  Google Scholar 

  12. Ueyama T, Geiszt M, Leto TL (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26:2160–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118

    Article  CAS  PubMed  Google Scholar 

  14. Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076

    Article  CAS  PubMed  Google Scholar 

  15. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  16. Adachi H, Yoshioka H (2015) Kinase-mediated orchestration of NADPH oxidase in plant immunity. Brief Funct Genomics 14:253–259

    Article  CAS  PubMed  Google Scholar 

  17. Fulton DJR (2019) The molecular regulation and functional roles of NOX5. In: Knaus UG, Leto TL (eds) NADPH oxidases: methods and protocols. Springer Science+Bussiness Media, New York, pp 353–375

    Chapter  Google Scholar 

  18. Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont JE, Corvilain B, Miot F, De Deken X (2009) Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by cAMP-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem 284:6725–6734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nauseef WM (2019) The phagocyte NOX2 NADPH oxidase in microbial killing and cell signaling. Curr Opin Immunol 60:130–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792

    Article  CAS  PubMed  Google Scholar 

  21. Choi J, Détry N, Kim K-T, Asiegbu FO, Valkonen JP, Lee Y-H (2014) fPoxDB: fungal peroxidase database for comparative genomics. BMC Microbiol 14:117

    Article  PubMed  PubMed Central  Google Scholar 

  22. Roos D, van Leeuwen K, Hsu AP, Priel DL, Begtrup A, Brandon R, Rawat A, Vignesh P, Madkaikar M, Stasia MJ, Bakri FG, de Boer M, Roesler J, Köker N, Köker MY, Jakobsen M, Bustamante J, Garcia-Morato MB, Shephard JLV, Cagdas D, Tezcan I, Sherkat R, Mortaz E, Fayezi A, Shahrooei M, Wolach B, Blancas-Galicia L, Kanegane H, Kawai T, Condino-Neto A, Vihinen M, Zerbe CS, Holland SM, Malech HL, Gallin JI, Kuhns DB (2021) Hematologically important mutations: the autosomal forms of chronic granulomatous disease (third update). Blood Cells Mol Dis 92:102596

    Article  CAS  PubMed  Google Scholar 

  23. Cunninghame Graham DS, Morris DL, Bhangale TR, Criswell LA, Syvänen A-C, Rönnblom L, Behrens TW, Graham RR, Vyse TJ (2011) Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet 7:e1002341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jacob CO, Eisenstein M, Dinauer MC, Ming W, Liu Q, John S, Quismorio FP Jr, Reiff A, Myones BL, Kaufman KM, McCurdy D, Harley JB, Silverman E, Kimberly RP, Vyse TJ, Gaffney PM, Moser KL, Klein-Gitelman M, Wagner-Weiner L, Langefeld CD, Armstrong DL, Zidovetzki R (2012) Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci U S A 109:E59–E67

    Article  CAS  PubMed  Google Scholar 

  25. Kim-Howard X, Sun C, Molineros JE, Maiti AK, Chandru H, Adler A, Wiley GB, Kaufman KM, Kottyan L, Guthridge JM, Rasmussen A, Kelly J, Sánchez E, Raj P, Li Q-Z, Bang S-Y, Lee H-S, Kim T-H, Kang YM, Suh C-H, Chung WT, Park Y-B, Choe J-Y, Shim SC, Lee S-S, Han B-G, Olsen NJ, Karp DR, Moser K, Pons-Estel BA, Wakeland EK, James JA, Harley JB, Bae S-C, Gaffney PM, Alarcón-Riquelme M, GENLES, Looger LL, Nath SK (2014) Allelic heterogeneity in NCF2 associated with systemic lupus erythematosus (SLE) susceptibility across four ethnic populations. Hum Mol Genet 23:1656–1668

    Article  CAS  PubMed  Google Scholar 

  26. Zhao J, Ma J, Deng Y, Kelly JA, Kim K, Bang S-Y, Lee H-S, Li Q-Z, Wakeland EK, Qiu R, Liu M, Guo J, Li Z, Tan W, Rasmussen A, Lessard CJ, Sivils KL, Hahn BH, Grossman JM, Kamen DL, Gilkeson GS, Bae S-C, Gaffney PM, Shen N, Tsao BP (2017) A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet 49:433–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Urbonaviciute V, Luo H, Sjöwall C, Bengtsson A, Holmdahl R (2019) Low production of reactive oxygen species drives systemic lupus erythematosus. Trends Mol Med 25:826–835

    Article  CAS  PubMed  Google Scholar 

  28. Denson LA, Jurickova I, Karns R, Shaw KA, Cutler DJ, Okou DT, Dodd A, Quinn K, Mondal K, Aronow BJ, Haberman Y, Linn A, Price A, Bezold R, Lake K, Jackson K, Walters TD, Griffiths A, Baldassano RN, Noe JD, Hyams JS, Crandall WV, Kirschner BS, Heyman MB, Snapper S, Guthery SL, Dubinsky MC, Leleiko NS, Otley AR, Xavier RJ, Stevens C, Daly MJ, Zwick ME, Kugathasan S (2018) Clinical and genomic correlates of neutrophil reactive oxygen species production in pediatric patients with Crohn’s disease. Gastroenterology 154:2097–2110

    Article  CAS  PubMed  Google Scholar 

  29. Dhillon SS, Fattouh R, Elkadri A, Xu W, Murchie R, Walters T, Guo C, Mack D, Huynh HQ, Baksh S, Silverberg MS, Griffiths AM, Snapper SB, Brumell JH, Muise AM (2014) Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology 147:680–689

    Article  CAS  PubMed  Google Scholar 

  30. Muise AM, Xu W, Guo C-H, Walters TD, Wolters VM, Fattouh R, Lam GY, Hu P, Murchie R, Sherlock M, Gana JC, NEOPICS, Russell RK, Glogauer M, Duerr RH, Cho JH, Lees CW, Satsangi J, Wilson DC, Paterson AD, Griffiths AM, Silverberg MS, Brumell JH (2012) NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut 61:1028–1035

    Article  CAS  PubMed  Google Scholar 

  31. Lapouge K, Smith SJM, Groemping Y, Rittinger K (2002) Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase: a central role for p67phox. J Biol Chem 277:10121–10128

    Article  CAS  PubMed  Google Scholar 

  32. Ziegler CS, Bouchab L, Tramier M, Durand D, Fieschi F, Dupré-Crochet S, Mérola F, Nüße O, Erard M (2019) Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase. J Biol Chem 294:3824–3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pick E (2020) Cell-free NADPH oxidase activation assays: a triumph of reductionism. In: Quinn MT, DeLeo FR (eds) Neutrophil: methods and protocols. Springer Science+Bussiness Media, New York, pp 325–411

    Chapter  Google Scholar 

  34. Freeman JL, Lambeth JD (1996) NADPH oxidase activity is independent of p47phox in vitro. J Biol Chem 271:22578–22582

    Article  CAS  PubMed  Google Scholar 

  35. Koshkin V, Lotan O, Pick E (1996) The cytosolic component p47phox is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J Biol Chem 271:30326–30329

    Article  CAS  PubMed  Google Scholar 

  36. Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E (2002) A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem 277:18605–18610

    Article  CAS  PubMed  Google Scholar 

  37. Yuzawa S, Miyano K, Honbou K, Inagaki F, Sumimoto H (2009) The domain organization of p67phox, a protein required for activation of the superoxide-producing NADPH oxidase in phagocytes. J Innate Immun 1:543–555

    Article  CAS  PubMed  Google Scholar 

  38. Durand D, Vivès C, Cannella D, Pérez J, Pebay-Peyroula E, Vachette P, Fieschi F (2010) NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol 169:45–53

    Article  CAS  PubMed  Google Scholar 

  39. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274:25051–25060

    Article  CAS  PubMed  Google Scholar 

  40. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac·GTP. Mol Cell 6:899–907

    Article  CAS  PubMed  Google Scholar 

  41. Miyano K, Koga H, Minakami R, Sumimoto H (2009) The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases. Biochem J 422:373–382

    Article  CAS  PubMed  Google Scholar 

  42. Kwong CH, Adams AG, Leto TL (1995) Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem 270:19868–19872

    Article  CAS  PubMed  Google Scholar 

  43. Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15:602–611

    Article  CAS  PubMed  Google Scholar 

  44. Han C-H, Freeman JL, Lee T, Motalebi SA, Lambeth JD (1998) Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67phox. J Biol Chem 273:16663–16668

    Article  CAS  PubMed  Google Scholar 

  45. Hata K, Takeshige K, Sumimoto H (1997) Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro. Biochem Biophys Res Commun 241:226–231

    Article  CAS  PubMed  Google Scholar 

  46. Maehara Y, Miyano K, Yuzawa S, Akimoto R, Takeya R, Sumimoto H (2010) A conserved region between the TPR and activation domains of p67phox participates in activation of the phagocyte NADPH oxidase. J Biol Chem 285:31435–31445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matono R, Miyano K, Kiyohara T, Sumimoto H (2014) Arachidonic acid induces direct interaction of the p67phox–Rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem 289:24874–24884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grizot S, Fieschi F, Dagher MC, Pebay-Peyroula E (2001) The active N-terminal region of p67phox. Structure at 1.8 Å resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem 276:21627–21631

    Article  CAS  PubMed  Google Scholar 

  49. Bechor E, Zahavi A, Berdichevsky Y, Pick E (2021) The molecular basis of Rac-GTP action: promoting binding of p67phox to Nox2 by disengaging the β hairpin from downstream residues. J Leukoc Biol 110:219–237

    Article  CAS  PubMed  Google Scholar 

  50. Bechor E, Zahavi A, Amichay M, Fradin T, Federman A, Berdichevsky Y, Pick E (2020) p67phox binds to a newly identified site in Nox2 following the disengagement of an intramolecular bond – Canaan sighted ? J Leukoc Biol 107:509–528

    Article  CAS  PubMed  Google Scholar 

  51. Berdichevsky Y, Mizrahi A, Ugolev Y, Molshanski-Mor S, Pick E (2007) Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids. J Biol Chem 282:22122–22139

    Article  CAS  PubMed  Google Scholar 

  52. Kami K, Takeya R, Sumimoto H, Kohda D (2002) Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13p. EMBO J 21:4268–4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D, Nunoi H, Takeshige K, Sumimoto H (2005) A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Arch Biochem Biophys 444:185–194

    Article  CAS  PubMed  Google Scholar 

  54. Massenet C, Chenavas S, Cohen-Addad C, Dagher M-C, Brandolin G, Pebay-Peyroula E, Fieschi F (2005) Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains. J Biol Chem 280:13752–13761

    Article  CAS  PubMed  Google Scholar 

  55. Maehara Y, Miyano K, Sumimoto H (2009) Role for the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases. Biochem Biophys Res Commun 379:589–593

    Article  CAS  PubMed  Google Scholar 

  56. Matute JD, Arias AA, Wright NA, Wrobel I, Waterhouse CC, Li XJ, Marchal CC, Stull ND, Lewis DB, Steele M, Kellner JD, Yu W, Meroueh SO, Nauseef WM, Dinauer MC (2009) A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity. Blood 114:3309–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van de Geer A, Nieto-Patlán A, Kuhns DB, Tool AT, Arias AA, Bouaziz M, de Boer M, Franco JL, Gazendam RP, van Hamme JL, van Houdt M, van Leeuwen K, Verkuijlen PJ, van den Berg TK, Alzate JF, Arango-Franco CA, Batura V, Bernasconi AR, Boardman B, Booth C, Burns SO, Cabarcas F, Bensussan NC, Charbit-Henrion F, Corveleyn A, Deswarte C, Azcoiti ME, Foell D, Gallin JI, Garcés C, Guedes M, Hinze CH, Holland SM, Hughes SM, Ibañez P, Malech HL, Meyts I, Moncada-Velez M, Moriya K, Neves E, Oleastro M, Perez L, Rattina V, Oleaga-Quintas C, Warner N, Muise AM, López JS, Trindade E, Vasconcelos J, Vermeire S, Wittkowski H, Worth A, Abel L, Dinauer MC, Arkwright PD, Roos D, Casanova J-L, Kuijpers TW, Bustamante J (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128:3957–3975

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kuribayashi F, Nunoi H, Wakamatsu K, Tsunawaki S, Sato K, Ito T, Sumimoto H (2002) The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J 21:6312–6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sumimoto H, Kamakura S, Ito T (2007) Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE 2007:re6

    Article  PubMed  Google Scholar 

  60. Ponting CP, Ito T, Moscat J, Diaz-Meco MT, Inagaki F, Sumimoto H (2002) OPR, PC and AID: all in the PB1 family. Trends Biochem Sci 27:10

    Article  CAS  PubMed  Google Scholar 

  61. Suh C-I, Stull ND, Li XJ, Tian W, Price MO, Grinstein S, Yaffe MB, Atkinson S, Dinauer MC (2006) The phosphoinositidebinding protein p40phox activates the NADPH oxidase during FcγIIA receptor-induced phagocytosis. J Exp Med 203:1915–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ellson CD, Davidson K, Ferguson GJ, O'Connor R, Stephens LR, Hawkins PT (2006) Neutrophils from p40phox−/− mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med 203:1927–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bánfi B, Clark RA, Steger K, Krause K-H (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513

    Article  PubMed  Google Scholar 

  64. Geiszt M, Lekstrom K, Witta J, Leto TL (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278:20006–20012

    Article  CAS  PubMed  Google Scholar 

  65. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278:25234–25246

    Article  CAS  PubMed  Google Scholar 

  66. Vendrov AE, Sumida A, Canugovi C, Lozhkin A, Hayami T, Madamanchi NR, Runge MS (2019) NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis. Redox Biol 21:101063

    Article  CAS  PubMed  Google Scholar 

  67. Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti JC, Bergstrom DE (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mohri H, Ninoyu Y, Sakaguchi H, Hirano S, Saito N, Ueyama T (2021) Nox3-derived superoxide in cochleae induces sensorineural hearing loss. J Neurosci 41:4716–4731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kroviarski Y, Debbabi M, Bachoual R, Périanin A, Gougerot-Pocidalo M-A, El-Benna J, Dang PM (2010) Phosphorylation of NADPH oxidase activator 1 (NOXA1) on serine 282 by MAP kinases and on serine 172 by protein kinase C and protein kinase A prevents NOX1 hyperactivation. FASEB J 24:2077–2092

    Article  CAS  PubMed  Google Scholar 

  70. Ranayhossaini DJ, Rodriguez AI, Sahoo S, Chen BB, Mallampalli RK, Kelley EE, Csanyi G, Gladwin MT, Romero G, Pagano PJ (2013) Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration. J Biol Chem 288:36437–36450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamamoto A, Kami K, Takeya R, Sumimoto H (2007) Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1). Biochem Biophys Res Commun 352:560–565

    Article  CAS  PubMed  Google Scholar 

  72. Dutta S, Rittinger K (2010) Regulation of NOXO1 activity through reversible interactions with p22phox and NOXA1. PLoS One 5:e10478

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yamamoto A, Takeya R, Matsumoto M, Nakayama KI, Sumimoto H (2013) Phosphorylation of Noxo1 at threonine 341 regulates its interaction with Noxa1 and the superoxide-producing activity of Nox1. FEBS J 280:5145–5159

    Article  CAS  PubMed  Google Scholar 

  74. Kwon J, Wang A, Burke DJ, Boudreau HE, Lekstrom KJ, Korzeniowska A, Sugamata R, Kim Y-S, Yi L, Ersoy I, Jaeger S, Palaniappan K, Ambruso DR, Jackson SH, Leto TL (2016) Peroxiredoxin 6 (Prdx6) supports NADPH oxidase 1 (Nox1)-based superoxide generation and cell migration. Free Radic Biol Med 96:99–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Leavey PJ, Gonzalez-Aller C, Thurman G, Kleinberg M, Rinckel L, Ambruso DW, Freeman S, Kuypers FA, Ambruso DR (2002) A 29-kDa protein associated with p67phox expresses both peroxiredoxin and phospholipase A2 activity and enhances superoxide anion production by a cell-free system of NADPH oxidase activity. J Biol Chem 277:45181–45187

    Article  CAS  PubMed  Google Scholar 

  76. Krishnaiah SY, Dodia C, Feinstein SI, Fisher AB (2013) p67phox terminates the phospholipase A2-derived signal for activation of NADPH oxidase (NOX2). FASEB J 27:2066–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chatterjee S, Feinstein SI, Dodia C, Sorokina E, Lien Y-C, Nguyen S, Debolt K, Speicher D, Fisher AB (2011) Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J Biol Chem 286:11696–11706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ellison MA, Thurman GW, Ambruso DR (2012) Phox activity of differentiated PLB-985 cells is enhanced, in an agonist specific manner, by the PLA2 activity of Prdx6-PLA2. Eur J Immunol 42:1609–1617

    Article  CAS  PubMed  Google Scholar 

  79. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, Del Campo J, Dunthorn M, Edvardsen B, Eglit Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V, Zhang Q (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 66:4–119

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lacaze I, Lalucque H, Siegmund U, Silar P, Brun S (2015) Identification of NoxD/Pro41 as the homologue of the p22phox NADPH oxidase subunit in fungi. Mol Microbiol 95:1006–1024

    Article  CAS  PubMed  Google Scholar 

  81. Siegmund U, Marschall R, Tudzynski P (2015) BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea. Mol Microbiol 95:988–1005

    Article  CAS  PubMed  Google Scholar 

  82. Zhao Y-L, Zhou T-T, Guo H-S (2016) Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+-signaling is required for plant infection by Verticillium dahliae. PLoS Pathog 12:e1005793

    Article  PubMed  PubMed Central  Google Scholar 

  83. Marschall R, Siegmund U, Burbank J, Tudzynski P (2016) Update on Nox function, site of action and regulation in Botrytis cinerea. Fungal Biol Biotechnol 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  84. Green KA, Eaton CJ, Savoian MS, Scott B (2019) A homologue of the fungal tetraspanin Pls1 is required for Epichloë festucae expressorium formation and establishment of a mutualistic interaction with Lolium perenne. Mol Plant Pathol 20:961–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takemoto D, Tanaka A, Scott B (2006) A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18:2807–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, Sumimoto H, Scott B (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci U S A 108:2861–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Noda Y, Kohjima M, Izaki T, Ota K, Yoshinaga S, Inagaki F, Ito T, Sumimoto H (2003) Molecular recognition in dimerization between PB1 domains. J Biol Chem 278:43516–43524

    Article  CAS  PubMed  Google Scholar 

  88. Wilson MI, Gill DJ, Perisic O, Quinn MT, Williams RL (2003) PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol Cell 12:39–50

    Article  CAS  PubMed  Google Scholar 

  89. Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G, Johansen T (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278:34568–34581

    Article  CAS  PubMed  Google Scholar 

  90. Evans TD, Sergin I, Zhang X, Razani B (2017) Target acquired: selective autophagy in cardiometabolic disease. Sci Signal 10:eaag2298

    Article  PubMed  PubMed Central  Google Scholar 

  91. Johansen T, Lamark T (2020) Selective autophagy: ATG8 family proteins, LIR motifs and cargo receptors. J Mol Biol 432:80–103

    Article  CAS  PubMed  Google Scholar 

  92. Ryder LS, Dagdas YF, Kershaw MJ, Venkataraman C, Madzvamuse A, Yan X, Cruz-Mireles N, Soanes DM, Oses-Ruiz M, Styles V, Sklenar J, Menke FLH, Talbot NJ (2019) A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature 574:423–427

    Article  CAS  PubMed  Google Scholar 

  93. Hann J, Bueb J-L, Tolle F, Bréchard S (2020) Calcium signaling and regulation of neutrophil functions: still a long way to go. J Leukoc Biol 107:285–297

    Article  CAS  PubMed  Google Scholar 

  94. Brandes RP, Schröder K (2014) NOXious phosphorylation: smooth muscle reactive oxygen species production is facilitated by direct activation of the NADPH oxidase Nox1. Circ Res 115:898–900

    Article  CAS  PubMed  Google Scholar 

  95. Belambri SA, Marzaioli V, Hurtado-Nedelec M, Pintard C, Liang S, Liu Y, Boussetta T, Gougerot-Pocidalo M-A, Ye RD, Dang PM, El-Benna J (2022) Impaired p47phox phosphorylation in neutrophils from patients with p67phox-deficient chronic granulomatous disease. Blood 139:2512–2522

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by KAKENHI Grant (21H02698) and Grant-in-Aid for Transformative Research Areas [A] (21H05267) from JSPS (Japan Society for the Promotion of Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Sumimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sumimoto, H., Kohda, A., Hayase, J., Kamakura, S. (2023). The NADPH Oxidase Activator p67phox and Its Related Proteins. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_16

Download citation

Publish with us

Policies and ethics