Skip to main content

Physiological Functions and Pathological Significance of NADPH Oxidase 3

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure
  • 496 Accesses

Abstract

NADPH oxidase 3 (NOX3) is the catalytic subunit of a superoxide-producing enzyme complex in the inner ear. Other subunits of this complex include p22phox and NOX organizer 1 (NOXO1). Both of these accessory proteins are essential for the enzymatic activity of NOX3, with p22phox stabilizing, and NOXO1 activating it. In mice, deleterious mutations in the genes that encode any of these subunits cause a balance defect and a complete lack of calcium carbonate crystals (otoconia) in the gravity-sensing organs (utricle and saccule) of the inner ear. Consistent with a role in the genesis of otoconia, the NOX3-containing enzyme complex is expressed adjacent to the utricle and saccule, in the endolymphatic sac and duct. NOX3 and p22phox are also expressed in the cochlea, and NOX3 is likely enzymatically active and pathogenic at this location because inactivating mutations protect mice from distinct types of acquired hearing loss. Thus, NOX3 plays both developmental and pathological roles in the inner ear. Finally, a few studies have linked NOX3 to physiological and pathological processes outside the inner ear. In this chapter we summarize key discoveries related to the expression pattern, interacting partners, physiological functions, and pathological effects of NOX3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Softcover Book
USD 299.99
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cross AR, Segal AW (2004) The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim Biophys Acta 1657:1–22. https://doi.org/10.1016/j.bbabio.2004.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Magnani F, Nenci S, Millana Fananas E et al (2017) Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci U S A 114:6764–6769. https://doi.org/10.1073/pnas.1702293114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  4. Lambeth JD, Neish AS (2014) Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu Rev Pathol 9:119–145. https://doi.org/10.1146/annurev-pathol-012513-104651

    Article  CAS  PubMed  Google Scholar 

  5. Royer-Pokora B, Kunkel LM, Monaco AP et al (1986) Cloning the gene for an inherited human disorder chronic granulomatous disease on the basis of its chromosomal location. Nature 322:32–38. https://doi.org/10.1038/322032a0

    Article  CAS  PubMed  Google Scholar 

  6. Nauseef WM, Clark RA (2019) Intersecting stories of the phagocyte NADPH oxidase and chronic granulomatous disease. Methods Mol Biol 1982:3–16. https://doi.org/10.1007/978-1-4939-9424-3_1

    Article  CAS  PubMed  Google Scholar 

  7. Nauseef WM (2014) Myeloperoxidase in human neutrophil host defence. Cell Microbiol 16:1146–1155. https://doi.org/10.1111/cmi.12312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rada B, Lekstrom K, Damian S et al (2008) The pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181:4883–4893. https://doi.org/10.4049/jimmunol.181.7.4883

    Article  CAS  PubMed  Google Scholar 

  9. Moskwa P, Lorentzen D, Excoffon KJ et al (2007) A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 175:174–183. https://doi.org/10.1164/rccm.200607-1029OC

    Article  CAS  PubMed  Google Scholar 

  10. Geiszt M, Witta J, Baffi J et al (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17:1502–1504. https://doi.org/10.1096/fj.02-1104fje

    Article  CAS  PubMed  Google Scholar 

  11. Conner GE, Wijkstrom-Frei C, Randell SH et al (2007) The lactoperoxidase system links anion transport to host defense in cystic fibrosis. FEBS Lett 581:271–278. https://doi.org/10.1016/j.febslet.2006.12.025

    Article  CAS  PubMed  Google Scholar 

  12. Gerson C, Sabater J, Scuri M et al (2000) The lactoperoxidase system functions in bacterial clearance of airways. Am J Respir Cell Mol Biol 22:665–671. https://doi.org/10.1165/ajrcmb.22.6.3980

    Article  CAS  PubMed  Google Scholar 

  13. Lorentzen D, Durairaj L, Pezzulo AA et al (2011) Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions. Free Radic Biol Med 50:1144–1150. https://doi.org/10.1016/j.freeradbiomed.2011.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vermot A, Petit-Härtlein I, Smith SME et al (2021) NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10060890

  15. Bánfi B, Malgrange B, Knisz J et al (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072. https://doi.org/10.1074/jbc.M403046200

    Article  CAS  PubMed  Google Scholar 

  16. Cheng G, Cao Z, Xu X et al (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140. https://doi.org/10.1016/s0378-1119(01)00449-8

    Article  CAS  PubMed  Google Scholar 

  17. Tabula Muris Consortium (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562:367–372. https://doi.org/10.1038/s41586-018-0590-4

    Article  CAS  Google Scholar 

  18. Bánfi B, Molnár G, Maturana A et al (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601. https://doi.org/10.1074/jbc.M103034200

    Article  PubMed  Google Scholar 

  19. Bánfi B, Tirone F, Durussel I et al (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591. https://doi.org/10.1074/jbc.M310268200

    Article  CAS  PubMed  Google Scholar 

  20. Kawahara T, Jackson HM, Smith SM et al (2011) Nox5 forms a functional oligomer mediated by self-association of its dehydrogenase domain. Biochemistry 50:2013–2025. https://doi.org/10.1021/bi1020088

    Article  CAS  PubMed  Google Scholar 

  21. Dinauer MC, Pierce EA, Bruns GA et al (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86:1729–1737. https://doi.org/10.1172/JCI114898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parkos CA, Allen RA, Cochrane CG et al (1987) Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742. https://doi.org/10.1172/JCI113128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakano Y, Banfi B, Jesaitis AJ et al (2007) Critical roles for p22phox in the structural maturation and subcellular targeting of Nox3. Biochem J 403:97–108. https://doi.org/10.1042/bj20060819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ueno N, Takeya R, Miyano K et al (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 280:23328–23339. https://doi.org/10.1074/jbc.M414548200

    Article  CAS  PubMed  Google Scholar 

  25. Ueyama T, Geiszt M, Leto TL (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26:2160–2174. https://doi.org/10.1128/mcb.26.6.2160-2174.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakano Y, Longo-Guess CM, Bergstrom DE et al (2008) Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in mice. J Clin Invest 118:1176–1185. https://doi.org/10.1172/jci33835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohri H, Ninoyu Y, Sakaguchi H et al (2021) Nox3-derived superoxide in cochleae induces sensorineural hearing loss. J Neurosci 41:4716–4731. https://doi.org/10.1523/jneurosci.2672-20.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Honda K, Kim SH, Kelly MC et al (2017) Molecular architecture underlying fluid absorption by the developing inner ear. Elife 6. https://doi.org/10.7554/eLife.26851

  29. Cheng G, Ritsick D, Lambeth JD (2004) Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem 279:34250–34255. https://doi.org/10.1074/jbc.M400660200

    Article  CAS  PubMed  Google Scholar 

  30. Kiss PJ, Knisz J, Zhang Y et al (2006) Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol 16:208–213. https://doi.org/10.1016/j.cub.2005.12.025

    Article  CAS  PubMed  Google Scholar 

  31. Bánfi B, Clark RA, Steger K et al (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513. https://doi.org/10.1074/jbc.C200613200

    Article  CAS  PubMed  Google Scholar 

  32. Geiszt M, Lekstrom K, Witta J et al (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278:20006–20012. https://doi.org/10.1074/jbc.M301289200

    Article  CAS  PubMed  Google Scholar 

  33. Takeya R, Ueno N, Kami K et al (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278:25234–25246. https://doi.org/10.1074/jbc.M212856200

    Article  CAS  PubMed  Google Scholar 

  34. Volpp BD, Nauseef WM, Donelson JE et al (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci U S A 86:7195–7199. https://doi.org/10.1073/pnas.86.18.7195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sumimoto H, Kage Y, Nunoi H et al (1994) Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A 91:5345–5349. https://doi.org/10.1073/pnas.91.12.5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Mendez I, Homayounpour N, Leto TL (1997) Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. Mol Cell Biol 17:2177–2185. https://doi.org/10.1128/MCB.17.4.2177

    Article  PubMed  PubMed Central  Google Scholar 

  37. Davis NY, McPhail LC, Horita DA (2012) The NOXO1β PX domain preferentially targets PtdIns(4,5)P2 and PtdIns(3,4,5)P3. J Mol Biol 417:440–453. https://doi.org/10.1016/j.jmb.2012.01.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanai F, Liu H, Field SJ et al (2001) The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nat Cell Biol 3:675–678. https://doi.org/10.1038/35083070

    Article  CAS  PubMed  Google Scholar 

  39. Sumimoto H, Minakami R, Miyano K (2019) Soluble regulatory proteins for activation of NOX family NADPH oxidases. Methods Mol Biol 1982:121–137. https://doi.org/10.1007/978-1-4939-9424-3_8

    Article  CAS  PubMed  Google Scholar 

  40. Cheng G, Diebold BA, Hughes Y et al (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281:17718–17726. https://doi.org/10.1074/jbc.M512751200

    Article  CAS  PubMed  Google Scholar 

  41. Leto TL, Adams AG, de Mendez I (1994) Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91:10650–10654. https://doi.org/10.1073/pnas.91.22.10650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pick E (2014) Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase: outsourcing a key task. Small GTPases 5:e27952. https://doi.org/10.4161/sgtp.27952

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100:2692–2696. https://doi.org/10.1182/blood-2002-04-1149

    Article  CAS  PubMed  Google Scholar 

  44. Bechor E, Zahavi A, Berdichevsky Y et al (2021) The molecular basis of Rac-GTP action-promoting binding of p67(phox) to Nox2 by disengaging the β hairpin from downstream residues. J Leukoc Biol 110:219–237. https://doi.org/10.1002/JLB.4HI1220-855RR

    Article  CAS  PubMed  Google Scholar 

  45. Sarfstein R, Gorzalczany Y, Mizrahi A et al (2004) Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 279:16007–16016. https://doi.org/10.1074/jbc.M312394200

    Article  CAS  PubMed  Google Scholar 

  46. Miyano K, Ueno N, Takeya R et al (2006) Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J Biol Chem 281:21857–21868. https://doi.org/10.1074/jbc.M513665200

    Article  CAS  PubMed  Google Scholar 

  47. Miyano K, Sumimoto H (2007) Role of the small GTPase Rac in p22phox-dependent NADPH oxidases. Biochimie 89:1133–1144. https://doi.org/10.1016/j.biochi.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  48. Paffenholz R, Bergstrom RA, Pasutto F et al (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491. https://doi.org/10.1101/gad.1172504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Flaherty JP, Spruce CA, Fairfield HE et al (2010) Generation of a conditional null allele of NADPH oxidase activator 1 (NOXA1). Genesis 48:568–575. https://doi.org/10.1002/dvg.20655

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jackson SH, Gallin JI, Holland SM (1995) The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med 182:751–758. https://doi.org/10.1084/jem.182.3.751

    Article  CAS  PubMed  Google Scholar 

  51. Jacob CO, Yu N, Yoo DG et al (2017) Haploinsufficiency of NADPH oxidase subunit neutrophil cytosolic factor 2 is sufficient to accelerate full-blown lupus in NZM 2328 mice. Arthritis Rheumatol 69:1647–1660. https://doi.org/10.1002/art.40141

    Article  CAS  PubMed  Google Scholar 

  52. Thalmann R, Ignatova E, Kachar B et al (2001) Development and maintenance of otoconia: biochemical considerations. Ann N Y Acad Sci 942:162–178. https://doi.org/10.1111/j.1749-6632.2001.tb03743.x

    Article  CAS  PubMed  Google Scholar 

  53. Lins U, Farina M, Kurc M et al (2000) The otoconia of the Guinea pig utricle: internal structure, surface exposure, and interactions with the filament matrix. J Struct Biol 131:67–78. https://doi.org/10.1006/jsbi.2000.4260

    Article  CAS  PubMed  Google Scholar 

  54. Lundberg YW, Xu Y, Thiessen KD et al (2015) Mechanisms of otoconia and otolith development. Dev Dyn 244:239–253. https://doi.org/10.1002/dvdy.24195

    Article  PubMed  Google Scholar 

  55. Mori M, Li G, Hashimoto M et al (2009) Pivotal advance: eosinophilia in the MES rat strain is caused by a loss-of-function mutation in the gene for cytochrome b(-245), alpha polypeptide (Cyba). J Leukoc Biol 86:473–478. https://doi.org/10.1189/jlb.1108715

    Article  CAS  PubMed  Google Scholar 

  56. Jones TA, Jones SM, Vijayakumar S et al (2011) The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs). Hear Res 280:133–140. https://doi.org/10.1016/j.heares.2011.05.005

    Article  PubMed  Google Scholar 

  57. Nazareth AM, Jones TA (1998) Central and peripheral components of short latency vestibular responses in the chicken. J Vestib Res 8:233–252

    Article  CAS  PubMed  Google Scholar 

  58. Jones SM, Erway LC, Bergstrom RA et al (1999) Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice. Hear Res 135:56–60. https://doi.org/10.1016/s0378-5955(99)00090-8

    Article  CAS  PubMed  Google Scholar 

  59. Jones SM, Erway LC, Johnson KR et al (2004) Gravity receptor function in mice with graded otoconial deficiencies. Hear Res 191:34–40. https://doi.org/10.1016/j.heares.2004.01.008

    Article  PubMed  Google Scholar 

  60. Stasia MJ (2016) CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene 586:27–35. https://doi.org/10.1016/j.gene.2016.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118. https://doi.org/10.1152/jn.2002.88.3.1097

    Article  CAS  PubMed  Google Scholar 

  62. Horak FB, Shupert CL, Dietz V et al (1994) Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp Brain Res 100:93–106. https://doi.org/10.1007/BF00227282

    Article  CAS  PubMed  Google Scholar 

  63. Eppsteiner RW, Smith RJ (2011) Genetic disorders of the vestibular system. Curr Opin Otolaryngol Head Neck Surg 19:397–402. https://doi.org/10.1097/MOO.0b013e32834a9852

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hurle B, Ignatova E, Massironi SM et al (2003) Non-syndromic vestibular disorder with otoconial agenesis in tilted/mergulhador mice caused by mutations in otopetrin 1. Hum Mol Genet 12:777–789. https://doi.org/10.1093/hmg/ddg087

    Article  CAS  PubMed  Google Scholar 

  65. Kozel PJ, Friedman RA, Erway LC et al (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696. https://doi.org/10.1074/jbc.273.30.18693

    Article  CAS  PubMed  Google Scholar 

  66. Mariño G, Fernández AF, Cabrera S et al (2010) Autophagy is essential for mouse sense of balance. J Clin Invest 120:2331–2344. https://doi.org/10.1172/JCI42601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ornitz DM, Bohne BA, Thalmann I et al (1998) Otoconial agenesis in tilted mutant mice. Hear Res 122:60–70. https://doi.org/10.1016/s0378-5955(98)00080-x

    Article  CAS  PubMed  Google Scholar 

  68. Flaherty JP, Fairfield HE, Spruce CA et al (2011) Molecular characterization of an allelic series of mutations in the mouse Nox3 gene. Mamm Genome 22:156–169. https://doi.org/10.1007/s00335-010-9309-z

    Article  CAS  PubMed  Google Scholar 

  69. Tu YH, Cooper AJ, Teng B et al (2018) An evolutionarily conserved gene family encodes proton-selective ion channels. Science 359:1047–1050. https://doi.org/10.1126/science.aao3264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harrod CG, Baker JF (2003) The vestibulo ocular reflex (VOR) in otoconia deficient head tilt (het) mutant mice versus wild type C57BL/6 mice. Brain Res 972:75–83. https://doi.org/10.1016/s0006-8993(03)02505-8

    Article  CAS  PubMed  Google Scholar 

  71. Ward BK, Lee YH, Roberts DC et al (2018) Mouse magnetic-field nystagmus in strong static magnetic fields is dependent on the presence of Nox3. Otol Neurotol 39:e1150–e1159. https://doi.org/10.1097/mao.0000000000002024

    Article  PubMed  PubMed Central  Google Scholar 

  72. Millar JL, Gimmon Y, Roberts D et al (2020) Improvement after vestibular rehabilitation not explained by improved passive VOR gain. Front Neurol 11:79. https://doi.org/10.3389/fneur.2020.00079

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sadeghpour S, Fornasari F, Otero-Millan J et al (2021) Evaluation of the video ocular counter-roll (vOCR) as a new clinical test of otolith function in peripheral Vestibulopathy. JAMA Otolaryngol Head Neck Surg 147:518–525. https://doi.org/10.1001/jamaoto.2021.0176

    Article  PubMed  Google Scholar 

  74. Holme RH, Kiernan BW, Brown SD et al (2002) Elongation of hair cell stereocilia is defective in the mouse mutant whirler. J Comp Neurol 450:94–102. https://doi.org/10.1002/cne.10301

    Article  PubMed  Google Scholar 

  75. Ebermann I, Scholl HP, Charbel Issa P et al (2007) A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss. Hum Genet 121:203–211. https://doi.org/10.1007/s00439-006-0304-0

    Article  CAS  PubMed  Google Scholar 

  76. Mburu P, Mustapha M, Varela A et al (2003) Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34:421–428. https://doi.org/10.1038/ng1208

    Article  CAS  PubMed  Google Scholar 

  77. Fasquelle L, Scott HS, Lenoir M et al (2011) Tmprss3, a transmembrane serine protease deficient in human DFNB8/10 deafness, is critical for cochlear hair cell survival at the onset of hearing. J Biol Chem 286:17383–17397. https://doi.org/10.1074/jbc.M110.190652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scott HS, Kudoh J, Wattenhofer M et al (2001) Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet 27:59–63. https://doi.org/10.1038/83768

    Article  CAS  PubMed  Google Scholar 

  79. Mitchem KL, Hibbard E, Beyer LA et al (2002) Mutation of the novel gene Tmie results in sensory cell defects in the inner ear of spinner, a mouse model of human hearing loss DFNB6. Hum Mol Genet 11:1887–1898. https://doi.org/10.1093/hmg/11.16.1887

    Article  CAS  PubMed  Google Scholar 

  80. Naz S, Giguere CM, Kohrman DC et al (2002) Mutations in a novel gene, TMIE, are associated with hearing loss linked to the DFNB6 locus. Am J Hum Genet 71:632–636. https://doi.org/10.1086/342193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Longo-Guess CM, Gagnon LH, Cook SA et al (2005) A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry-scurry (hscy) mice. Proc Natl Acad Sci U S A 102:7894–7899. https://doi.org/10.1073/pnas.0500760102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kalay E, Li Y, Uzumcu A et al (2006) Mutations in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene cause autosomal recessive nonsyndromic hearing loss. Hum Mutat 27:633–639. https://doi.org/10.1002/humu.20368

    Article  CAS  PubMed  Google Scholar 

  83. Shabbir MI, Ahmed ZM, Khan SY et al (2006) Mutations of human TMHS cause recessively inherited non-syndromic hearing loss. J Med Genet 43:634–640. https://doi.org/10.1136/jmg.2005.039834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ahmed ZM, Masmoudi S, Kalay E et al (2008) Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans. Nat Genet 40:1335–1340. https://doi.org/10.1038/ng.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Du X, Schwander M, Moresco EM et al (2008) A catechol-O-methyltransferase that is essential for auditory function in mice and humans. Proc Natl Acad Sci U S A 105:14609–14614. https://doi.org/10.1073/pnas.0807219105

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cryns K, van Alphen AM, van Spaendonck MP et al (2004) Circling behavior in the Ecl mouse is caused by lateral semicircular canal defects. J Comp Neurol 468:587–595. https://doi.org/10.1002/cne.10975

    Article  PubMed  Google Scholar 

  87. Ohlemiller KK, Jones SM, Johnson KR (2016) Application of mouse models to research in hearing and balance. J Assoc Res Otolaryngol 17:493–523. https://doi.org/10.1007/s10162-016-0589-1

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jones SM, Jones TA (2014) Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains. J Am Acad Audiol 25:289–301. https://doi.org/10.3766/jaaa.25.3.8

    Article  PubMed  PubMed Central  Google Scholar 

  89. Baker M (2013) Neuroscience: through the eyes of a mouse. Nature 502:156–158. https://doi.org/10.1038/502156a

    Article  CAS  PubMed  Google Scholar 

  90. Brenowitz EA, Zakon HH (2015) Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. Trends Neurosci 38:273–278. https://doi.org/10.1016/j.tins.2015.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kniep R, Zahn D, Wulfes J et al (2017) The sense of balance in humans: structural features of otoconia and their response to linear acceleration. PLoS One 12:e0175769. https://doi.org/10.1371/journal.pone.0175769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lundberg YW, Zhao X, Yamoah EN (2006) Assembly of the otoconia complex to the macular sensory epithelium of the vestibule. Brain Res 1091:47–57. https://doi.org/10.1016/j.brainres.2006.02.083

    Article  CAS  PubMed  Google Scholar 

  93. Kniep R (2015) Otoconia: mimicking a calcite-based functional material of the human body. From basic research to medical aspects. Pure Appl Chem 87:719–736

    Article  CAS  Google Scholar 

  94. Anniko M (1980) Development of otoconia. Am J Otolaryngol 1:400–410. https://doi.org/10.1016/s0196-0709(80)80021-4

    Article  CAS  PubMed  Google Scholar 

  95. Lim DJ (1973) Formation and fate of the otoconia. Scanning and transmission electron microscopy. Ann Otol Rhinol Laryngol 82:23–35. https://doi.org/10.1177/000348947308200109

    Article  CAS  PubMed  Google Scholar 

  96. Kawamata S, Igarashi Y (1995) Growth and turnover of rat otoconia as revealed by labeling with tetracycline. Anat Rec 242:259–266. https://doi.org/10.1002/ar.1092420216

    Article  CAS  PubMed  Google Scholar 

  97. Accetta R, Damiano S, Morano A et al (2016) Reactive oxygen species derived from NOX3 and NOX5 drive differentiation of human oligodendrocytes. Front Cell Neurosci 10:146. https://doi.org/10.3389/fncel.2016.00146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morimoto H, Kanatsu-Shinohara M, Shinohara T (2015) ROS-generating oxidase Nox3 regulates the self-renewal of mouse spermatogonial stem cells. Biol Reprod 92:147. https://doi.org/10.1095/biolreprod.114.127647

    Article  CAS  PubMed  Google Scholar 

  99. Feng YY, Tang M, Suzuki M et al (2019) Essential role of NADPH oxidase-dependent production of reactive oxygen species in maintenance of sustained B cell receptor signaling and B cell proliferation. J Immunol 202:2546–2557. https://doi.org/10.4049/jimmunol.1800443

    Article  CAS  PubMed  Google Scholar 

  100. Hazlitt RA, Min J, Zuo J (2018) Progress in the development of preventative drugs for cisplatin-induced hearing loss. J Med Chem 61:5512–5524. https://doi.org/10.1021/acs.jmedchem.7b01653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramkumar V, Mukherjea D, Dhukhwa A et al (2021) Oxidative stress and inflammation caused by cisplatin ototoxicity. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10121919

  102. Breglio AM, Rusheen AE, Shide ED et al (2017) Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun 8:1654. https://doi.org/10.1038/s41467-017-01837-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rousset F, Nacher-Soler G, Coelho M et al (2020) Redox activation of excitatory pathways in auditory neurons as mechanism of age-related hearing loss. Redox Biol 30:101434. https://doi.org/10.1016/j.redox.2020.101434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mukherjea D, Jajoo S, Kaur T et al (2010) Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid Redox Signal 13:589–598. https://doi.org/10.1089/ars.2010.3110

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mukherjea D, Jajoo S, Sheehan K et al (2011) NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxid Redox Signal 14:999–1010. https://doi.org/10.1089/ars.2010.3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gates GA, Mills JH (2005) Presbycusis. Lancet 366:1111–1120. https://doi.org/10.1016/S0140-6736(05)67423-5

    Article  PubMed  Google Scholar 

  107. Ruan Q, Ma C, Zhang R et al (2014) Current status of auditory aging and anti-aging research. Geriatr Gerontol Int 14:40–53. https://doi.org/10.1111/ggi.12124

    Article  PubMed  Google Scholar 

  108. Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130:94–107. https://doi.org/10.1016/s0378-5955(99)00003-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Johnson KR, Gagnon LH, Longo-Guess C et al (2012) Association of a citrate synthase missense mutation with age-related hearing loss in A/J mice. Neurobiol Aging 33:1720–1729. https://doi.org/10.1016/j.neurobiolaging.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  110. Zheng QY, Ding D, Yu H et al (2009) A locus on distal chromosome 10 (ahl4) affecting age-related hearing loss in A/J mice. Neurobiol Aging 30:1693–1705. https://doi.org/10.1016/j.neurobiolaging.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  111. Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35:21–23. https://doi.org/10.1038/ng1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stamataki S, Francis HW, Lehar M et al (2006) Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hear Res 221:104–118. https://doi.org/10.1016/j.heares.2006.07.014

    Article  PubMed  Google Scholar 

  113. Lavinsky J, Crow AL, Pan C et al (2015) Genome-wide association study identifies nox3 as a critical gene for susceptibility to noise-induced hearing loss. PLoS Genet 11:e1005094. https://doi.org/10.1371/journal.pgen.1005094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rousset F, Nacher-Soler G, Kokje VBC et al (2022) NADPH oxidase 3 deficiency protects from noise-induced sensorineural hearing loss. Front Cell Dev Biol 10:832314. https://doi.org/10.3389/fcell.2022.832314

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cantu E, Shah RJ, Lin W et al (2015) Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. J Thorac Cardiovasc Surg 149:596–602. https://doi.org/10.1016/j.jtcvs.2014.09.077

    Article  CAS  PubMed  Google Scholar 

  116. Carnesecchi S, Carpentier JL, Foti M et al (2006) Insulin-induced vascular endothelial growth factor expression is mediated by the NADPH oxidase NOX3. Exp Cell Res 312:3413–3424. https://doi.org/10.1016/j.yexcr.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  117. Chen G, Adeyemo AA, Zhou J et al (2007) A genome-wide search for linkage to renal function phenotypes in West Africans with type 2 diabetes. Am J Kidney Dis 49:394–400. https://doi.org/10.1053/j.ajkd.2006.12.011

    Article  CAS  PubMed  Google Scholar 

  118. Choi JH, Oh J, Lee MJ et al (2021) Inhibition of lysophosphatidic acid receptor 1-3 deteriorates experimental autoimmune encephalomyelitis by inducing oxidative stress. J Neuroinflammation 18:240. https://doi.org/10.1186/s12974-021-02278-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gao D, Nong S, Huang X et al (2010) The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J Biol Chem 285:29965–29973. https://doi.org/10.1074/jbc.M110.128694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gupta AP, Syed AA, Garg R et al (2019) Pancreastatin inhibitor PSTi8 attenuates hyperinsulinemia induced obesity and inflammation mediated insulin resistance via MAPK/NOX3-JNK pathway. Eur J Pharmacol 864:172723. https://doi.org/10.1016/j.ejphar.2019.172723

    Article  CAS  PubMed  Google Scholar 

  121. Issa N, Lachance G, Bellmann K et al (2018) Cytokines promote lipolysis in 3T3-L1 adipocytes through induction of NADPH oxidase 3 expression and superoxide production. J Lipid Res 59:2321–2328. https://doi.org/10.1194/jlr.M086504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Malik SA, Acharya JD, Mehendale NK et al (2019) Pterostilbene reverses palmitic acid mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation. Free Radic Res 53:815–827. https://doi.org/10.1080/10715762.2019.1635252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Malleter M, Tauzin S, Bessede A et al (2013) CD95L cell surface cleavage triggers a prometastatic signaling pathway in triple-negative breast cancer. Cancer Res 73:6711–6721. https://doi.org/10.1158/0008-5472.Can-13-1794

    Article  CAS  PubMed  Google Scholar 

  124. Nakayama N, Nakamura T, Okada H et al (2011) Modulators of induction of plasminogen activator inhibitor type-1 in HepG2 cells by transforming growth factor-β. Coron Artery Dis 22:468–478. https://doi.org/10.1097/MCA.0b013e32834a3817

    Article  PubMed  Google Scholar 

  125. Plantinga TS, Arts P, Knarren GH et al (2017) Rare NOX3 variants confer susceptibility to agranulocytosis during thyrostatic treatment of Graves' disease. Clin Pharmacol Ther 102:1017–1024. https://doi.org/10.1002/cpt.733

    Article  CAS  PubMed  Google Scholar 

  126. Radkowski P, Wątor G, Skupien J et al (2016) Analysis of gene expression to predict dynamics of future hypertension incidence in type 2 diabetic patients. BMC Proc 10:113–117. https://doi.org/10.1186/s12919-016-0015-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yasuoka H, Garrett SM, Nguyen XX et al (2019) NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5. Am J Physiol Lung Cell Mol Physiol 316:L644–l655. https://doi.org/10.1152/ajplung.00106.2018

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yin C, Li K, Yu Y et al (2018) Genome-wide association study identifies loci and candidate genes for non-idiopathic pulmonary hypertension in eastern Chinese Han population. BMC Pulm Med 18:158. https://doi.org/10.1186/s12890-018-0719-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li L, He Q, Huang X et al (2010) NOX3-derived reactive oxygen species promote TNF-alpha-induced reductions in hepatocyte glycogen levels via a JNK pathway. FEBS Lett 584:995–1000. https://doi.org/10.1016/j.febslet.2010.01.044

    Article  CAS  PubMed  Google Scholar 

  130. Tyler AD, Milgrom R, Stempak JM et al (2013) The NOD2insC polymorphism is associated with worse outcome following ileal pouch-anal anastomosis for ulcerative colitis. Gut 62:1433–1439. https://doi.org/10.1136/gutjnl-2011-301957

    Article  CAS  PubMed  Google Scholar 

  131. Zhang Y, Shan P, Srivastava A et al (2016) An endothelial Hsp70-TLR4 axis limits Nox3 expression and protects against oxidant injury in lungs. Antioxid Redox Signal 24:991–1012. https://doi.org/10.1089/ars.2015.6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mazzonetto PC, Ariza CB, Ocanha SG et al (2019) Mutation in NADPH oxidase 3 (NOX3) impairs SHH signaling and increases cerebellar neural stem/progenitor cell proliferation. Biochim Biophys Acta Mol basis Dis 1865:1502–1515. https://doi.org/10.1016/j.bbadis.2019.02.022

    Article  CAS  PubMed  Google Scholar 

  133. Augsburger F, Filippova A, Rasti D et al (2019) Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol 26:101272. https://doi.org/10.1016/j.redox.2019.101272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Christine Blaumueller for critical review of the manuscript. This project was supported by a grant from the National Institute on Deafness and Other Communication Disorders (https://www.nih.gov/R01DC014953 to B Bánfi) and by resources of the Iowa City Department of Veterans Affairs Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Botond Bánfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakano, Y., Bánfi, B. (2023). Physiological Functions and Pathological Significance of NADPH Oxidase 3. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_11

Download citation

Publish with us

Policies and ethics