Skip to main content

Acceleration of Particles on the Sun

  • Chapter
  • First Online:
Solar-Terrestrial Relations
  • 186 Accesses

Abstract

One of the most important physical processes on the Sun and/or near it is the acceleration of charged particles (electrons and ions) to high (relativistic) energies. This process is closely related, first of all, to the large-scale structure and dynamics of the atmosphere as a whole (macroscopic effects of magnetohydrodynamic nature). At another, microscopic level of consideration, acceleration is closely related to the intimate properties of solar magnetoplasma (microphysical processes of generation, for example, of local electric fields). It can even be argued that the acceleration process at the initial stage (from thermal velocities) is mainly determined by microscopic processes in the plasma, while the final stage (acceleration to the maximum possible energies) requires the presence of extended (large-scale) magnetic formations in the solar corona.

The truth is always simpler than one might think.

Richard Feynman

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 109.00
Price excludes VAT (USA)
Softcover Book
USD 99.99
Price excludes VAT (USA)
Hardcover Book
USD 139.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berezhko EG, Taneev SN (2003) Shock acceleration of solar cosmic rays. Russian Astron Let 29(8):530–542

    Article  ADS  Google Scholar 

  • Berezhko EG, Taneev SN (2013) Acceleration of solar cosmic rays by shock waves. Russian Astron Lett 39(6):458–469

    Google Scholar 

  • Cowsik R, Lee MA (1982) Transport of neutrinos, radiation and energetic particles in accretion flows. Proc R Soc Lond A 383:409–437

    Article  ADS  Google Scholar 

  • Dorman LI, Miroshnichenko LI (1968) Solar Cosmic Rays. Moscow Fizmatgiz p 468 (in Russian). English edition (1976) for NASA by Indian National Scientific Documentation Center

    Google Scholar 

  • Dreicer H (1959) Electron and ion runaway in a fully ionized gas, I. Phys Rev 115(2):238–249

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ellison DC, Ramaty R (1985) Shock acceleration of electrons and ions in solar flares. Astrophys J 29:400–408

    Article  ADS  Google Scholar 

  • Fermi E (1949) On the origin of the cosmic radiation. Phys Rev 75(8):1169–1174

    Article  ADS  MATH  Google Scholar 

  • Fermi E (1954) Galactic magnetic fields and the origin of cosmic radiation. Astrophys J 119(1):1–6

    Article  ADS  Google Scholar 

  • Hayakawa S, Nishimura J, Obayashi H, Sato H (1964) Fcceleration mechanisms of cosmic rays. Prog Theor Phys Suppl 30, 86–133

    Google Scholar 

  • Kallenrode M-B (2003) Current views on impulsive and gradual solar energetic particle events. J Phys G: Nucl Part Phys 29 (2003) 1–17 PII: S0954-3899(03)53935-4

    Google Scholar 

  • Kirk JG (1994) Particle acceleration. In: Kirk JG, Melrose DB, Priest ER (eds) Plasma astrophysics. Berlin, Springer, pp 225–314

    Google Scholar 

  • Lin RP, Krucker S, Hurford GJ, Smith DM, Hudson HS, Holman GD, Schwartz RA, Dennis BR, Share GH, Murphy RJ, Emslie AG, Johns-Krull C, Vilmer N (2003) RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray flare. Astrophys J 595:L69–L76

    Article  ADS  Google Scholar 

  • Litvinenko YE, Somov BV (1995) Relativistic acceleration of protons in reconnecting current sheets in solar flares. Solar Phys 158:317–330

    Article  ADS  Google Scholar 

  • Miroshnichenko LI, de Koning CA, Perez-Enriquez R (2000) Large solar event of September 29, 1989: Ten years after. Space Sci Rev 91(3-4):615–715

    Article  ADS  Google Scholar 

  • Parker EN (1958) Cosmic ray modulation by solar wind. Phys Rev 110(6):1445–1449

    Article  ADS  Google Scholar 

  • Perez-Peraza JA (1975) On the origin of the upper cutoff in the solar proton spectrum. J Geophys Res 80(25):3535–3542

    Article  ADS  Google Scholar 

  • Priest E, Forbes T (2000) Magnetic field reconnection (MHD theory and applications). Cambridge University Press, p 520 (in Russian: MAIK Moscow, 2004), p 592

    Google Scholar 

  • Reames DV (1995) Solar energetic particles: a paradigm shift. Revs Geophys Suppl 33:585–589

    Article  ADS  Google Scholar 

  • Reames DV (1999) Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90:413–491

    Article  ADS  Google Scholar 

  • Schneider P, Bogdan TJ (1989) Energetic particle acceleration in spherically symmetric accretion flows: importance of a momentum-dependent diffusion coefficient. Astrophys J 347:496–504

    Article  ADS  Google Scholar 

  • Somov BV (1992) Physical processes in solar flares. Kluwer Academic, Dordrecht. ISBN 0-7923-1261-9, p 257

    Google Scholar 

  • Syrovatsky SI (1966) Dynamic dissipation of the magnetic field and particle acceleration. Soviet Astron J 43(2):340–355

    Google Scholar 

  • Tylka AJ, Cohen CMS, Dietrich WF, Maclennan CG, McGuire RE, Ng CK, Reames DV (2001) Evidence for remnant flare suprathermal in the source population of solar energetic particles in the 2000 Bastille Day Event. Astrophys J 558(L59–L63)

    Google Scholar 

  • Vlahos L (1989) Particle acceleration in solar flares. Solar Phys 121(1/2):431–447

    ADS  Google Scholar 

  • Vlahos L (1994) Theory of fragmented energy release in the Sun. Space Sci Rev 68:39–50

    Article  ADS  Google Scholar 

  • Völk JH (1981) Acceleration of cosmic rays in a medium taking into account losses and diffuse sources of γ-radiation. Izvestiya AN SSSR. Physics Series 45(7):1122–1136

    Google Scholar 

  • Wentzel DG (1964a) Motion across magnetic discontinuities and Fermi acceleration of charged particles. Astrophys J 140:1013–1024

    Article  ADS  Google Scholar 

  • Wentzel DG (1964b) Solar flares caused by the skin effect in twisted magnetic fields. Astrophys J 140:1563–1578

    Article  ADS  Google Scholar 

  • Wentzel DG (1965) Fermi acceleration of solar cosmic rays. J Geophys Res 70:2716–2719

    Article  ADS  Google Scholar 

  • Yoshimori M, Suga K, Shiozawa A (2000) Yokoh observations of solar gamma-ray flare on November 6, 1997. Adv Space Res 25(8):1801–1804

    Article  ADS  Google Scholar 

  • Zank GP, Rice WKM, Wu CC (2000) Particle acceleration and coronal mass ejection driven shocks: a theoretical model. J Geophys Res 105A:25079–25095

    Article  Google Scholar 

  • Dorman LI (2006) Cosmic ray interactions, propagation, and acceleration in space plasmas. Springer, Netherlands, p 31+842

    Book  Google Scholar 

  • Speiser TW (1965) Particle trajectories in model current sheets. J Geophys Res 70(17):4219–4226

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miroshnichenko, L. (2023). Acceleration of Particles on the Sun. In: Solar-Terrestrial Relations. Springer, Cham. https://doi.org/10.1007/978-3-031-22548-2_7

Download citation

Publish with us

Policies and ethics