Skip to main content

Hierarchy of Solar-Earth Relations

  • Chapter
  • First Online:
Solar-Terrestrial Relations
  • 188 Accesses

Abstract

The energy of solar disturbances on the difficult path from the Sun to the Earth passes through the interplanetary medium and several invisible earthly shells—the magnetosphere, ionosphere and atmosphere. This explains one of the main features of the solar-terrestrial relation system (STR)—their “multi-storey” (mediation). In other words, in the chain of physical processes connecting the Sun with the Earth, there is a certain structure, sequence in time and space, i.e. there is a kind of hierarchy of STR. This inevitably leads to another important feature—the nonlinear nature of solar-magnetospheric, solar-atmospheric, and solar-biosphere relations. The simplest STR scheme is shown in Fig. 11.1.

Among the main effects in the chain of solar-terrestrial connections, in our opinion, it is necessary to highlight, first of all, the effect on the magnetosphere and ionosphere, solar-tropospheric connections and heliobiology (the Sun and the biosphere). Of particular interest is the influence of solar activity on the rotation of the Earth (the Sun and the lithosphere). The question of the possible impact of the resonant structure of the Solar System on solar activity and solar-planetary relations in general is of fundamental importance. Finally, the energy and information aspects of solar-terrestrial relations (theories and models of physical mechanisms) are of fundamental importance. From the content of the previous chapters, it is clear how multifaceted and rich in physical ideas the problem of solar-terrestrial relations and solar-terrestrial physics in general. Within the framework of a small textbook, it is impossible to present in any detail even the main results of research, observations and experiments. Therefore, below we will give only a few, the most striking examples of the revealed connections, focusing on their possible physical mechanisms.

An imperturbable system in everything

Complete harmony in nature,—Only in our ghostly freedom

We recognize the discord with her”.

F.I. Tyutchev

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 109.00
Price excludes VAT (USA)
Softcover Book
USD 99.99
Price excludes VAT (USA)
Hardcover Book
USD 139.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JH Jr, Garcia-Munoz M, Grigorov NL, Klecker B, Kondratyeva MA, Mason GM, McGuire RE, Mewaldt RA, Panasyuk MI, Tretyakova ChA, Tylka AJ, Zhuravlev DA (1991) The charge state of the anomalous component of cosmic rays. Astrophys J 375 (L45-L48). ISSN: 0004-637X. https://resolver.caltech.edu/CaltechAUTHORS:20140512-080754764

  • Burkard OM (1968) Der Vorstoß in den interplanetaren Raum. Neue Erkenntnisse. Neue Probleme, Inaugurationsrede, Karl-Franzens-Universität Graz, 8. November 1968, Verlag Jos. A. Kienreich Graz p 32

    Google Scholar 

  • Danjon A (1958) Sur le variations de la rotation de la Terre sur un cause possible de la variation aléatoire. Comptes Rendus Acad Sci 247:2061–2066

    Google Scholar 

  • Ishkov VN (1998) Floating magnetic fluxes are the key to predicting large solar fluxes flares. Izvestiya RAN, Physics Series 62(9):1835–1839

    Google Scholar 

  • Ishkov VN (2012) Complexes of active areas as the main source of extreme and large solar proton events. In: Nagovitsin YA (ed) Solar and solar-terrestrial physics - 2012, St. Petersburg, Pulkovo, September 24–28, pp 231–234

    Google Scholar 

  • Ishkov VN (2017) Space weather forecast: design principles and implementation boundaries (experience of three cycles). Kosmich Issled Space Res 55(6):391–398

    Google Scholar 

  • Kane SR, Hurley K, McTiernan JM, Sommer M, Boer M, Niel M (1995) Energy release and dissipation during giant solar flares. Astrophys J 446(1):L47–L50

    Article  ADS  Google Scholar 

  • Khabarova OV (2003) Investigation of variations in the solar wind parameters before the onset of geomagnetic storms - PhD thesis, p 150

    Google Scholar 

  • Kovtyukh AS (2007) Ring current. In: Model of the Cosmos (2007), 8th ed (Ed.: M.I. Panasyuk) v.1 482–517

    Google Scholar 

  • Mayoud PN (1972) The aa indices: a 100-year series characterizing the magnetic activity. J Geophys Res 77(34):6870–6874

    Article  ADS  Google Scholar 

  • Miroshnichenko LI (2003) Radiation hazard in space. Kluwer Academic, Dordrecht, p 238

    Google Scholar 

  • Olsson A, Janhunen P, Karlsson T, Ivchenko N, Blomberg LG (2004) Statistics of Joule heating in the auroral zone and polar cap using Astrid-2 satellite Poynting flux. Ann Geophys 22:4133–4142

    Article  ADS  Google Scholar 

  • Palmroth M, Janhunen P, Pulkkinen TI, Koskinen HEJ (2004) Ionospheric energy input as a function of solar wind parameters: global MHD simulation results. Ann Geophys 22:549–566

    Article  ADS  Google Scholar 

  • Panasyuk MI, Kalmykov NN, Kovtyukh AS, Kuznetsov NV, Kulikov GV, Kurt VG, Nymmik RA, Roganova TM (2006) Radiation conditions in outer space. Skobeltsyn Institute of Nuclear Physics (SINP), Moscow State University, Moscow, p 130

    Google Scholar 

  • Smart DF, Shea MA (1994) Geomagnetic cutoffs: A review for space dosimetry applications. Adv Space Res 14(10):787–796

    Article  ADS  Google Scholar 

  • Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S (2003) The extreme magnetic storm of 1–2 September 1859. J Geophys Res 108(A7):1268. https://doi.org/10.1029/2002JA009504

    Article  Google Scholar 

  • Watermann J, Vainio R, Lilensten J, Belehaki A, Messerotti M (2009) The state of space weather scientific modelling – an introduction. Space Sci Rev 147:111–120. https://doi.org/10.1007/s11214-009-9576-8

    Article  ADS  Google Scholar 

  • Labitzke K, van Loon H (1990) Associations between the 11-year solar cycle, quasi-biennial oscillations and the atmosphere: a summary of recent work. Phil Trans R Soc London A330:557–560

    ADS  Google Scholar 

  • Waltersheid RL (1989) Solar cycle effects on the upper atmosphere: implications for satellite drag. J Spacecraft 26(6):439–444

    Article  Google Scholar 

  • Burkard O (1962) Weltraumforschung in Österreich? Österreichische Hochschulzeitung 14(8):5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miroshnichenko, L. (2023). Hierarchy of Solar-Earth Relations. In: Solar-Terrestrial Relations. Springer, Cham. https://doi.org/10.1007/978-3-031-22548-2_11

Download citation

Publish with us

Policies and ethics