Skip to main content

Melatonin, Circadian Rhythms, and Sleep: An Opportunity to Understand Mechanisms for Protecting Against Neurodegenerative Disease in Drosophila

  • Chapter
  • First Online:
Sleep and Clocks in Aging and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 18))

Abstract

Research on melatonin’s antioxidant and sleep-chronobiotic properties has increased exponentially over the past 15 years. Resolving the evolutionary progression along which melatonin gained chronobiotic properties—in addition to its primordial antioxidant functions—is essential for understanding the divergent mechanisms by which the hormone assumed control over organismal timekeeping and its implementation as a molecular protectant across different species. Drosophila are an ideal model to discriminate where the divergence likely occurred in the evolutionary tree (and its functional implications), but there is a current dearth of knowledge regarding the fly melatonin system. In the present chapter, we discuss melatonin’s roles in sleep and circadian rhythms and then detail the indolamine’s multilayered antioxidant network. The physiological relevance of melatonin’s antioxidant effects is explored in several disease contexts, including stroke, epilepsy, and neurodegenerative disorder. We conclude the chapter with a few exemplars of how a better understanding of melatonin’s properties in Drosophila might yield actionable insights on how melatonin regimens can be strategically combined with sleep/circadian interventions to improve treatment outcomes in those with neurodegenerative conditions.

The authors Hannah K. Dollish and Kathryn E. R. Kennedy made equal contributions to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acuna-Castroviejo D, Reiter RJ, Menendez-Pelaez A, Pablos MI, Burgos A (1994) Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver. J Pineal Res 16:100–112

    Google Scholar 

  • Acuna-Fernandez C, Marin JS, Diaz-Casado ME, Rusanova I, Darias-Delbey B, Perez-Guillama L, Florido-Ruiz J, Acuna-Castroviejo D (2020) Daily changes in the expression of clock genes in sepsis and their relation with sepsis outcome and urinary excretion of 6-Sulfatoximelatonin. Shock 53:550–559

    Google Scholar 

  • Ahmed R, Mahavadi S, Al-Shboul O, Bhattacharya S, Grider JR, Murthy KS (2013) Characterization of signaling pathways coupled to melatonin receptors in gastrointestinal smooth muscle. Regul Pept 184:96–103

    Google Scholar 

  • Albarran MT, Lopez-Burillo S, Pablos MI, Reiter RJ, Agapito MT (2001) Endogenous rhythms of melatonin, total antioxidant status and superoxide dismutase activity in several tissues of chick and their inhibition by light. J Pineal Res 30:227–233

    Google Scholar 

  • Albertson TE, Peterson SL, Stark LG, Lakin ML, Winters WD (1981) The anticonvulsant properties of melatonin on kindled seizures in rats. Neuropharmacology 20:61–66

    Google Scholar 

  • Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L, Livrea MA (2003) The chemistry of melatonin’s interaction with reactive species. J Pineal Res 34:1–10

    Google Scholar 

  • Almeida Montes LG, Ontiveros Uribe MP, Cortes Sotres J, Heinze Martin G (2003) Treatment of primary insomnia with melatonin: a double-blind, placebo-controlled, crossover study. J Psychiatry Neurosci 28:191–196

    Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    Google Scholar 

  • Antolin I, Rodriguez C, Sainz RM, Mayo JC, Uria H, Kotler ML, Rodriguez-Colunga MJ, Tolivia D, Menendez-Pelaez A (1996) Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J 10:882–890

    Google Scholar 

  • Anton-Tay F, Diaz JL, Fernandez-Guardiola A (1971) On the effect of melatonin upon human brain. Its possible therapeutic implications. Life Sci I 10:841–850

    Google Scholar 

  • Antunes F, Barclay LR, Ingold KU, King M, Norris JQ, Scaiano JC, Xi F (1999) On the antioxidant activity of melatonin. Free Radic Biol Med 26:117–128

    Google Scholar 

  • Arendt J, Broadway J (1987) Light and melatonin as zeitgebers in man. Chronobiol Int 4:273–282

    Google Scholar 

  • Arendt J (2000) In what circumstances is melatonin a useful sleep therapy? Consensus statement, WFSRS focus group, Dresden, November 1999. J Sleep Res 9:397–398

    Google Scholar 

  • Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV (1986) Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl 21:375–394

    Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    Google Scholar 

  • Attenburrow ME, Cowen PJ, Sharpley AL (1996) Low dose melatonin improves sleep in healthy middle-aged subjects. Psychopharmacology 126:179–181

    Google Scholar 

  • Aydin L, Gundogan NU, Yazici C (2015) Anticonvulsant efficacy of melatonin in an experimental model of hyperthermic febrile seizures. Epilepsy Res 118:49–54

    Google Scholar 

  • Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R (2012) Mammalian metallothioneins: properties and functions. Metallomics 4:739–750

    Google Scholar 

  • Bachurin S, Oxenkrug G, Lermontova N, Afanasiev A, Beznosko B, Vankin G, Shevtzova E, Mukhina T, Serkova T (1999) N-acetylserotonin, melatonin and their derivatives improve cognition and protect against beta-amyloid-induced neurotoxicity. Ann N Y Acad Sci 890:155–166

    Google Scholar 

  • Baker J, Kimpinski K (2018) Role of melatonin in blood pressure regulation: an adjunct anti-hypertensive agent. Clin Exp Pharmacol Physiol 45:755–766

    Google Scholar 

  • Bald EM, Nance CS, Schultz JL (2021) Melatonin may slow disease progression in amyotrophic lateral sclerosis: findings from the pooled resource open-access ALS clinic trials database. Muscle Nerve 63:572–576

    Google Scholar 

  • Barlow-Walden LR, Reiter RJ, Abe M, Pablos M, Menendez-Pelaez A, Chen LD, Poeggeler B (1995) Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 26:497–502

    Google Scholar 

  • Baydas G, Gursu MF, Yilmaz S, Canpolat S, Yasar A, Cikim G, Canatan H (2002) Daily rhythm of glutathione peroxidase activity, lipid peroxidation and glutathione levels in tissues of pinealectomized rats. Neurosci Lett 323:195–198

    Google Scholar 

  • Baydas G, Ozer M, Yasar A, Koz ST, Tuzcu M (2006) Melatonin prevents oxidative stress and inhibits reactive gliosis induced by hyperhomocysteinemia in rats. Biochemistry (mosc) 71(Suppl 1):S91–S95

    Google Scholar 

  • Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128:1754–1760

    Google Scholar 

  • Belfer SJ, Bashaw AG, Perlis ML, Kayser MS (2021) A Drosophila model of sleep restriction therapy for insomnia. Mol Psychiatry 26:492–507

    Google Scholar 

  • Ben-Nathan D, Maestroni GJ, Lustig S, Conti A (1995) Protective effects of melatonin in mice infected with encephalitis viruses. Arch Virol 140:223–230

    Google Scholar 

  • Benloucif S, Dubocovich ML (1996) Melatonin and light induce phase shifts of circadian activity rhythms in the C3H/HeN mouse. J Biol Rhythms 11:113–125

    Google Scholar 

  • Benot S, Molinero P, Soutto M, Goberna R, Guerrero JM (1998) Circadian variations in the rat serum total antioxidant status: correlation with melatonin levels. J Pineal Res 25:1–4

    Google Scholar 

  • Benot S, Goberna R, Reiter RJ, Garcia-Maurino S, Osuna C, Guerrero JM (1999) Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res 27:59–64

    Google Scholar 

  • Berger HR, Nyman AKG, Morken TS, Vettukattil R, Brubakk AM, Wideroe M (2017) Early metabolite changes after melatonin treatment in neonatal rats with hypoxic-ischemic brain injury studied by in-vivo1H MR spectroscopy. PLoS ONE 12:e0185202

    Google Scholar 

  • Bettahi I, Pozo D, Osuna C, Reiter RJ, Acuna-Castroviejo D, Guerrero JM (1996) Melatonin reduces nitric oxide synthase activity in rat hypothalamus. J Pineal Res 20:205–210

    Google Scholar 

  • Bettahi I, Guerrero JM, Reiter RJ, Osuna C (1998) Physiological concentrations of melatonin inhibit the norepinephrine-induced activation of prostaglandin E2 and cyclic AMP production in rat hypothalamus: a mechanism involving inhibiton of nitric oxide synthase. J Pineal Res 25:34–40

    Google Scholar 

  • Bindoni M, Rizzo R (1965) Hippocampal evoked potentials and convulsive activity after electrolytic lesions of the pineal body, in chronic experiments on rabbits. Arch Sci Biol (bologna) 49:223–233

    Google Scholar 

  • Bjork RT, Mortimore NP, Loganathan S, Zarnescu DC (2022) Dysregulation of translation in TDP-43 proteinopathies: deficits in the RNA supply chain and local protein production. Front Neurosci 16:840357

    Google Scholar 

  • Blanchard B, Pompon D, Ducrocq C (2000) Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res 29:184–192

    Google Scholar 

  • Bojkowski CJ, Aldhous ME, English J, Franey C, Poulton AL, Skene DJ, Arendt J (1987) Suppression of nocturnal plasma melatonin and 6-sulphatoxymelatonin by bright and dim light in man. Horm Metab Res 19:437–440

    Google Scholar 

  • Bonilla E, Valero-Fuenmayor N, Pons H, Chacin-Bonilla L (1997) Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus. Cell Mol Life Sci 53:430–434

    Google Scholar 

  • Bonilla E, Rodon C, Valero N, Pons H, Chacin-Bonilla L, Garcia Tamayo J, Rodriguez Z, Medina-Leendertz S, Anez F (2001) Melatonin prolongs survival of immunodepressed mice infected with the Venezuelan equine encephalomyelitis virus. Trans R Soc Trop Med Hyg 95:207–210

    Google Scholar 

  • Bonilla E, Valero N, Chacin-Bonilla L, Medina-Leendertz S (2004) Melatonin and viral infections. J Pineal Res 36:73–79

    Google Scholar 

  • Borlongan CV, Yamamoto M, Takei N, Kumazaki M, Ungsuparkorn C, Hida H, Sanberg PR, Nishino H (2000) Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J 14:1307–1317

    Google Scholar 

  • Boudreau P, Yeh WH, Dumont GA, Boivin DB (2013) Circadian variation of heart rate variability across sleep stages. Sleep 36:1919–1928

    Google Scholar 

  • Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21:6405–6412

    Google Scholar 

  • Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    Google Scholar 

  • Broadway J, Arendt J, Folkard S (1987) Bright light phase shifts the human melatonin rhythm during the Antarctic winter. Neurosci Lett 79:185–189

    Google Scholar 

  • Burkhardt S, Reiter RJ, Tan DX, Hardeland R, Cabrera J, Karbownik M (2001) DNA oxidatively damaged by chromium(III) and H(2)O(2) is protected by the antioxidants melatonin, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, resveratrol and uric acid. Int J Biochem Cell Biol 33:775–783

    Google Scholar 

  • Buxton OM, L’Hermite-baleriaux M, Hirschfeld U, Cauter E (1997) Acute and delayed effects of exercise on human melatonin secretion. J Biol Rhythms 12:568–574

    Google Scholar 

  • Cabrer J, Burkhardt S, Tan DX, Manchester LC, Karbownik M, Reiter RJ (2001) Autoxidation and toxicant-induced oxidation of lipid and DNA in monkey liver: reduction of molecular damage by melatonin. Pharmacol Toxicol 89:225–230

    Google Scholar 

  • Cabrera J, Reiter RJ, Tan DX, Qi W, Sainz RM, Mayo JC, Garcia JJ, Kim SJ, El-Sokkary G (2000) Melatonin reduces oxidative neurotoxicity due to quinolinic acid: in vitro and in vivo findings. Neuropharmacology 39:507–514

    Google Scholar 

  • Cagnacci A, Krauchi K, Wirz-Justice A, Volpe A (1997) Homeostatic versus circadian effects of melatonin on core body temperature in humans. J Biol Rhythms 12:509–517

    Google Scholar 

  • Cajochen C, Krauchi K, von Arx MA, Mori D, Graw P, Wirz-Justice A (1996) Daytime melatonin administration enhances sleepiness and theta/alpha activity in the waking EEG. Neurosci Lett 207:209–213

    Google Scholar 

  • Cajochen C, Krauchi K, Mori D, Graw P, Wirz-Justice A (1997a) Melatonin and S-20098 increase REM sleep and wake-up propensity without modifying NREM sleep homeostasis. Am J Physiol 272:R1189–R1196

    Google Scholar 

  • Cajochen C, Krauchi K, Wirz-Justice A (1997b) The acute soporific action of daytime melatonin administration: effects on the EEG during wakefulness and subjective alertness. J Biol Rhythms 12:636–643

    Google Scholar 

  • Cajochen C, Krauchi K, Wirz-Justice A (2003) Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 15:432–437

    Google Scholar 

  • Callebert J, Jaunay JM, Jallon JM (1991) Control of Drosophila biorhythms. In: Arendt J, Pevet P (eds) Advances in pineal research. John Libbey & Co Ltd, London, UK

    Google Scholar 

  • Carampin P, Rosan S, Dalzoppo D, Zagotto G, Zatta P (2003) Some biochemical properties of melatonin and the characterization of a relevant metabolite arising from its interaction with H2O2. J Pineal Res 34:134–142

    Google Scholar 

  • Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P (2013) Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 63:322–330

    Google Scholar 

  • Carloni S, Perrone S, Buonocore G, Longini M, Proietti F, Balduini W (2008) Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats. J Pineal Res 44:157–164

    Google Scholar 

  • Carr DB, Reppert SM, Bullen B, Skrinar G, Beitins I, Arnold M, Rosenblatt M, Martin JB, McArthur JW (1981) Plasma melatonin increases during exercise in women. J Clin Endocrinol Metab 53:224–225

    Google Scholar 

  • Cassone VM, Chesworth MJ, Armstrong SM (1986a) Dose-dependent entrainment of rat circadian rhythms by daily injection of melatonin. J Biol Rhythms 1:219–229

    Google Scholar 

  • Cassone VM, Chesworth MJ, Armstrong SM (1986b) Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei. Physiol Behav 36:1111–1121

    Google Scholar 

  • Cervantes M, Morali G, Letechipia-Vallejo G (2008) Melatonin and ischemia-reperfusion injury of the brain. J Pineal Res 45:1–7

    Google Scholar 

  • Champney TH, Champney JA (1992) Novel anticonvulsant action of chronic melatonin in gerbils. NeuroReport 3:1152–1154

    Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    Google Scholar 

  • Chatgilialoglu C, Ferreri C, Krokidis MG, Masi A, Terzidis MA (2021) On the relevance of hydroxyl radical to purine DNA damage. Free Radic Res 55:384–404

    Google Scholar 

  • Cheeseman KH (1993) Tissue injury by free radicals. Toxicol Ind Health 9:39–51

    Google Scholar 

  • Chen ST, Chuang JI (1999) The antioxidant melatonin reduces cortical neuronal death after intrastriatal injection of kainate in the rat. Exp Brain Res 124:241–247

    Google Scholar 

  • Chesworth MJ, Cassone VM, Armstrong SM (1987) Effects of daily melatonin injections on activity rhythms of rats in constant light. Am J Physiol 253:R101–R107

    Google Scholar 

  • Cheung RT (2003) The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion. J Pineal Res 34:153–160

    Google Scholar 

  • Chien S, Reiter LT, Bier E, Gribskov M (2002) Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res 30:149–151

    Google Scholar 

  • Cho S, Joh TH, Baik HH, Dibinis C, Volpe BT (1997) Melatonin administration protects CA1 hippocampal neurons after transient forebrain ischemia in rats. Brain Res 755:335–338

    Google Scholar 

  • Cho JH, Bhutani S, Kim CH, Irwin MR (2021) Anti-inflammatory effects of melatonin: A systematic review and meta-analysis of clinical trials. Brain Behav Immun 93:245–253

    Google Scholar 

  • Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56:371–381

    Google Scholar 

  • Costa EJ, Lopes RH, Lamy-Freund MT (1995) Permeability of pure lipid bilayers to melatonin. J Pineal Res 19:123–126

    Google Scholar 

  • Costa-Lotufo LV, Fonteles MM, Lima IS, de Oliveira AA, Nascimento VS, de Bruin VM, Viana GS (2002) Attenuating effects of melatonin on pilocarpine-induced seizures in rats. Comp Biochem Physiol C Toxicol Pharmacol 131:521–529

    Google Scholar 

  • Coto-Montes A, Tomas-Zapico C, Escames G, Leon J, Tolivia D, Josefarodriguez-Colunga M, Acuna-Castroviejo D (2003) Characterization of melatonin high-affinity binding sites in purified cell nuclei of the hamster (Mesocricetus auratus) harderian gland. J Pineal Res 34:202–207

    Google Scholar 

  • Cramer H, Rudolph J, Consbruch U, Kendel K (1974) On the effects of melatonin on sleep and behavior in man. Adv Biochem Psychopharmacol 11:187–191

    Google Scholar 

  • Crespo E, Macias M, Pozo D, Escames G, Martin M, Vives F, Guerrero JM, Acuna-Castroviejo D (1999) Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 13:1537–1546

    Google Scholar 

  • Crow JP, Beckman JS (1995) Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv Pharmacol 34:17–43

    Google Scholar 

  • Csaba G, Barath P (1971) Are Langerhan’s islets influenced by the pineal body? Experientia 27:962

    Google Scholar 

  • Cuzzocrea S, Zingarelli B, Gilad E, Hake P, Salzman AL, Szabo C (1997) Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. J Pineal Res 23:106–116

    Google Scholar 

  • Cuzzocrea S, Costantino G, Gitto E, Mazzon E, Fulia F, Serraino I, Cordaro S, Barberi I, de Sarro A, Caputi AP (2000) Protective effects of melatonin in ischemic brain injury. J Pineal Res 29:217–227

    Google Scholar 

  • Dahlitz M, Alvarez B, Vignau J, English J, Arendt J, Parkes JD (1991) Delayed sleep phase syndrome response to melatonin. Lancet 337:1121–1124

    Google Scholar 

  • Dai DF, Chiao YA, Martin GM, Marcinek DJ, Basisty N, Quarles EK, Rabinovitch PS (2017) Mitochondrial-targeted catalase: extended longevity and the roles in various disease models. Prog Mol Biol Transl Sci 146:203–241

    Google Scholar 

  • Daniels WM, Reiter RJ, Melchiorri D, Sewerynek E, Pablos MI, Ortiz GG (1995) Melatonin counteracts lipid peroxidation induced by carbon tetrachloride but does not restore glucose-6 phosphatase activity. J Pineal Res 19:1–6

    Google Scholar 

  • Davanipour Z, Poulsen HE, Weimann A, Sobel E (2009) Endogenous melatonin and oxidatively damaged guanine in DNA. BMC Endocr Disord 9:22

    Google Scholar 

  • de Nobrega AK, Lyons LC (2020) Aging and the clock: Perspective from flies to humans. Eur J Neurosci 51:454–481

    Google Scholar 

  • Deacon S, English J, Arendt J (1994) Acute phase-shifting effects of melatonin associated with suppression of core body temperature in humans. Neurosci Lett 178:32–34

    Google Scholar 

  • Diaz B, Blazquez E (1986) Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Horm Metab Res 18:225–229

    Google Scholar 

  • Diaz-Cervantes E, Garcia-Revilla MA, Soto-Arredondo K, Villasenor-Granados T, Martinez-Alfaro M, Robles J (2019) Computational study of metal complexes formed with EDTA, melatonin, and its main metabolites: implications in lead intoxication and clues to a plausible alternative treatment. J Mol Model 25:18

    Google Scholar 

  • Ding K, Wang H, Xu J, Li T, Zhang L, Ding Y, Zhu L, He J, Zhou M (2014) Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2-ARE signaling pathway as a potential mechanism. Free Radic Biol Med 73:1–11

    Google Scholar 

  • Dollins AB, Zhdanova IV, Wurtman RJ, Lynch HJ, Deng MH (1994) Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci U S A 91:1824–1828

    Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Google Scholar 

  • Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI (1998) Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J 12:1211–1220

    Google Scholar 

  • Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E (2005) Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res 39:113–120

    Google Scholar 

  • El-Abhar HS, Shaalan M, Barakat M, El-Denshary ES (2002) Effect of melatonin and nifedipine on some antioxidant enzymes and different energy fuels in the blood and brain of global ischemic rats. J Pineal Res 33:87–94

    Google Scholar 

  • El-Sokkary GH, Omar HM, Hassanein AF, Cuzzocrea S, Reiter RJ (2002) Melatonin reduces oxidative damage and increases survival of mice infected with Schistosoma mansoni. Free Radic Biol Med 32:319–332

    Google Scholar 

  • Ellis LC (1996) Melatonin reduces mortality from Aleutian disease in mink (Mustela vison). J Pineal Res 21:214–217

    Google Scholar 

  • Ellis CM, Lemmens G, Parkes JD (1996) Melatonin and insomnia. J Sleep Res 5:61–65

    Google Scholar 

  • Elmahallawy EK, Jimenez-Aranda A, Martinez AS, Rodriguez-Granger J, Navarro-Alarcon M, Gutierrez-Fernandez J, Agil A (2014) Activity of melatonin against Leishmania infantum promastigotes by mitochondrial dependent pathway. Chem Biol Interact 220:84–93

    Google Scholar 

  • Escames G, Guerrero JM, Reiter RJ, Garcia JJ, Munoz-Hoyos A, Ortiz GG, Oh CS (1997) Melatonin and vitamin E limit nitric oxide-induced lipid peroxidation in rat brain homogenates. Neurosci Lett 230:147–150

    Google Scholar 

  • Escames G, Ozturk G, Bano-Otalora B, Pozo MJ, Madrid JA, Reiter RJ, Serrano E, Concepcion M, Acuna-Castroviejo D (2012) Exercise and melatonin in humans: reciprocal benefits. J Pineal Res 52:1–11

    Google Scholar 

  • Esparza JL, Gomez M, Romeu M, Mulero M, Sanchez DJ, Mallol J, Domingo JL (2003) Aluminum-induced pro-oxidant effects in rats: protective role of exogenous melatonin. J Pineal Res 35:32–39

    Google Scholar 

  • Esparza JL, Gomez M, Rosa Nogues M, Paternain JL, Mallol J, Domingo JL (2005) Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J Pineal Res 39:129–136

    Google Scholar 

  • Espinar A, Garcia-Oliva A, Isorna EM, Quesada A, Prada FA, Guerrero JM (2000) Neuroprotection by melatonin from glutamate-induced excitotoxicity during development of the cerebellum in the chick embryo. J Pineal Res 28:81–88

    Google Scholar 

  • Ferini-Strambi L, Zucconi M, Biella G, Stankov B, Fraschini F, Oldani A, Smirne S (1993) Effect of melatonin on sleep microstructure: preliminary results in healthy subjects. Sleep 16:744–747

    Google Scholar 

  • Finocchiaro LM, Glikin GC (1998) Intracellular melatonin distribution in cultured cell lines. J Pineal Res 24:22–34

    Google Scholar 

  • Fischer TW, Slominski A, Zmijewski MA, Reiter RJ, Paus R (2008) Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 17:713–730

    Google Scholar 

  • Fischer TW, Kleszczynski K, Hardkop LH, Kruse N, Zillikens D (2013) Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2’-deoxyguanosine) in ex vivo human skin. J Pineal Res 54:303–312

    Google Scholar 

  • Floreani M, Skaper SD, Facci L, Lipartiti M, Giusti P (1997) Melatonin maintains glutathione homeostasis in kainic acid-exposed rat brain tissues. FASEB J 11:1309–1315

    Google Scholar 

  • Floyd RA, Carney JM (1993) The role of metal ions in oxidative processes and aging. Toxicol Ind Health 9:197–214

    Google Scholar 

  • Foa A, Magnone C, Bertolucci C (2002) Circadian organization in ruin lizards: phase response curve for melatonin changes with season. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:141–145

    Google Scholar 

  • Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159

    Google Scholar 

  • Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23:239–257

    Google Scholar 

  • Galano A, Medina ME, Tan DX, Reiter RJ (2015) Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res 58:107–116

    Google Scholar 

  • Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514

    Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–257

    Google Scholar 

  • Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Webster NR (2014) Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. J Pineal Res 56:427–438

    Google Scholar 

  • Gantner BN, Lafond KM, Bonini MG (2020) Nitric oxide in cellular adaptation and disease. Redox Biol 34:101550

    Google Scholar 

  • Garcia JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, Oh CS, Munoz-Hoyos A (1997) Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FEBS Lett 408:297–300

    Google Scholar 

  • Garcia JJ, Reiter RJ, Karbownik M, Calvo JR, Ortiz GG, Tan DX, Martinez-Ballarin E, Acuna-Castroviejo D (2001) N-acetylserotonin suppresses hepatic microsomal membrane rigidity associated with lipid peroxidation. Eur J Pharmacol 428:169–175

    Google Scholar 

  • Garcia JJ, Lopez-Pingarron L, Almeida-Souza P, Tres A, Escudero P, Garcia-Gil FA, Tan DX, Reiter RJ, Ramirez JM, Bernal-Perez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56:225–237

    Google Scholar 

  • Garfinkel D, Laudon M, Nof D, Zisapel N (1995) Improvement of sleep quality in elderly people by controlled-release melatonin. Lancet 346:541–544

    Google Scholar 

  • Garrido M, Paredes SD, Cubero J, Lozano M, Toribio-Delgado AF, Munoz JL, Reiter RJ, Barriga C, Rodriguez AB (2010) Jerte Valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J Gerontol A Biol Sci Med Sci 65:909–914

    Google Scholar 

  • Gastel JA, Roseboom PH, Rinaldi PA, Weller JL, Klein DC (1998) Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation. Science 279:1358–1360

    Google Scholar 

  • Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:PL169–PL174

    Google Scholar 

  • Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P, Cordaro S, Corona G, Trimarchi G, Barberi I (2001) Effects of melatonin treatment in septic newborns. Pediatr Res 50:756–760

    Google Scholar 

  • Giusti P, Lipartiti M, Franceschini D, Schiavo N, Floreani M, Manev H (1996) Neuroprotection by melatonin from kainate-induced excitotoxicity in rats. FASEB J 10:891–896

    Google Scholar 

  • Giusti P, Lipartiti M, Gusella M, Floreani M, Manev H (1997) In vitro and in vivo protective effects of melatonin against glutamate oxidative stress and neurotoxicity. Ann N Y Acad Sci 825:79–84

    Google Scholar 

  • Golombek DA, Fernandez Duque D, De Brito Sanchez MG, Burin L, Cardinali DP (1992) Time-dependent anticonvulsant activity of melatonin in hamsters. Eur J Pharmacol, 210:253–258

    Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102

    Google Scholar 

  • Gomez M, Esparza JL, Nogues MR, Giralt M, Cabre M, Domingo JL (2005) Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic Biol Med 38:104–111

    Google Scholar 

  • Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    Google Scholar 

  • Guerrero JM, Reiter RJ, Ortiz GG, Pablos MI, Sewerynek E, Chuang JI (1997) Melatonin prevents increases in neural nitric oxide and cyclic GMP production after transient brain ischemia and reperfusion in the Mongolian gerbil (Meriones unguiculatus). J Pineal Res 23:24–31

    Google Scholar 

  • Gulcin I, Buyukokuroglu ME, Kufrevioglu OI (2003) Metal chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res 34:278–281

    Google Scholar 

  • Hajam YA, Rai S (2019) Melatonin and insulin modulates the cellular biochemistry, histoarchitecture and receptor expression during hepatic injury in diabetic rats. Life Sci 239:117046

    Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Google Scholar 

  • Halliwell B, Adhikary A, Dingfelder M, Dizdaroglu M (2021) Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem Soc Rev 50:8355–8360

    Google Scholar 

  • Hardeland R, Balzer I, Poeggeler B, Fuhrberg B, Uria H, Behrmann G, Wolf R, Meyer TJ, Reiter RJ (1995) On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation, and scavenging of free radicals. J Pineal Res 18:104–111

    Google Scholar 

  • Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27:119–130

    Google Scholar 

  • Hardeland R, Tan DX, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47:109–126

    Google Scholar 

  • Hardeland R (2016) Melatonin in plants—diversity of levels and multiplicity of functions. Front Plant Sci 7:198

    Google Scholar 

  • Hardeland R (2017) Melatonin and the electron transport chain. Cell Mol Life Sci 74:3883–3896

    Google Scholar 

  • Hardeland R (2021) Melatonin, its metabolites and their interference with reactive nitrogen compounds. Molecules 26

    Google Scholar 

  • Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M (2002) A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res 30:1083–1090

    Google Scholar 

  • Hashimoto S, Nakamura K, Honma S, Honma K (1998) Free-running of plasma melatonin rhythm prior to full manifestation of a non-24 hour sleep-wake syndrome. Psychiatry Clin Neurosci 52:264–265

    Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634

    Google Scholar 

  • Hayakawa T, Kamei Y, Urata J, Shibui K, Ozaki S, Uchiyama M, Okawa M (1998) Trials of bright light exposure and melatonin administration in a patient with non-24 hour sleep-wake syndrome. Psychiatry Clin Neurosci 52:261–262

    Google Scholar 

  • Hedlund L, Lischko MM, Rollag MD, Niswender GD (1977) Melatonin: daily cycle in plasma and cerebrospinal fluid of calves. Science 195:686–687

    Google Scholar 

  • Herrera J, Nava M, Romero F, Rodriguez-Iturbe B (2001) Melatonin prevents oxidative stress resulting from iron and erythropoietin administration. Am J Kidney Dis 37:750–757

    Google Scholar 

  • Hintermann E, Grieder NC, Amherd R, Brodbeck D, Meyer UA (1996) Cloning of an arylalkylamine N-acetyltransferase (aaNAT1) from Drosophila melanogaster expressed in the nervous system and the gut. Proc Natl Acad Sci U S A 93:12315–12320

    Google Scholar 

  • Hirata F, Hayaishi O, Tokuyama T, Seno S (1974) In vitro and in vivo formation of two new metabolites of melatonin. J Biol Chem 249:1311–1313

    Google Scholar 

  • Hoban TM, Lewy AJ, Fuller CA (1990) Light suppression of melatonin in the squirrel monkey (Saimiri sciureus). J Pineal Res 9:13–19

    Google Scholar 

  • Horstman JA, Wrona MZ, Dryhurst G (2002) Further insights into the reaction of melatonin with hydroxyl radical. Bioorg Chem 30:371–382

    Google Scholar 

  • Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H, Mehrzadi S (2016) Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res 61:411–425

    Google Scholar 

  • Hughes RJ, Badia P (1997) Sleep-promoting and hypothermic effects of daytime melatonin administration in humans. Sleep 20:124–131

    Google Scholar 

  • Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML (2001) Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280:C110–C118

    Google Scholar 

  • Hyde LL, Underwood H (1995) Daily melatonin infusions entrain the locomotor activity of pinealectomized lizards. Physiol Behav 58:943–951

    Google Scholar 

  • Izidoro LF, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, da Silva SL, Zanchi FB, Zuliani JP, Fernandes CF, Calderon LA, Stabeli RG, Soares AM (2014) Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry. Biomed Res Int 2014:196754

    Google Scholar 

  • Jacob S, Poeggeler B, Weishaupt JH, Siren AL, Hardeland R, Bahr M, Ehrenreich H (2002) Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J Pineal Res 33:186–187

    Google Scholar 

  • James SP, Mendelson WB, Sack DA, Rosenthal NE, Wehr TA (1987) The effect of melatonin on normal sleep. Neuropsychopharmacology 1:41–44

    Google Scholar 

  • James SP, Sack DA, Rosenthal NE, Mendelson WB (1990) Melatonin administration in insomnia. Neuropsychopharmacology 3:19–23

    Google Scholar 

  • Jan JE, Connolly MB, Hamilton D, Freeman RD, Laudon M (1999) Melatonin treatment of non-epileptic myoclonus in children. Dev Med Child Neurol 41:255–259

    Google Scholar 

  • Jesudason EP, Baben B, Ashok BS, Masilamoni JG, Kirubagaran R, Jebaraj WC, Jayakumar R (2007) Anti-inflammatory effect of melatonin on A beta vaccination in mice. Mol Cell Biochem 298:69–81

    Google Scholar 

  • Joo JY, Uz T, Manev H (1998) Opposite effects of pinealectomy and melatonin administration on brain damage following cerebral focal ischemia in rat. Restor Neurol Neurosci 13:185–191

    Google Scholar 

  • Kampmann U, Lauritzen ES, Grarup N, Jessen N, Hansen T, Moller N, Stoy J (2021) Acute metabolic effects of melatonin-A randomized crossover study in healthy young men. J Pineal Res 70:e12706

    Google Scholar 

  • Karbownik M, Tan DX, Reiter RJ (2000) Melatonin reduces the oxidation of nuclear DNA and membrane lipids induced by the carcinogen delta-aminolevulinic acid. Int J Cancer 88:7–11

    Google Scholar 

  • KEHRER, J. P. (1993) Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48

    Google Scholar 

  • Kennaway DJ, Earl CR, Shaw PF, Royles P, Carbone F, Webb H (1987) Phase delay of the rhythm of 6-sulphatoxy melatonin excretion by artificial light. J Pineal Res 4:315–320

    Google Scholar 

  • Kennaway DJ, Sanford LM, Godfrey B, Friesen HG (1983) Patterns of progesterone, melatonin and prolactin secretion in ewes maintained in four different photoperiods. J Endocrinol 97:229–242

    Google Scholar 

  • Kennaway DJ, Rowe SA (1994) Impact of light pulses on 6-sulphatoxymelatonin rhythms in rats. J Pineal Res 16:65–72

    Google Scholar 

  • Kilic E, Ozdemir YG, Bolay H, Kelestimur H, Dalkara T (1999) Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab 19:511–516

    Google Scholar 

  • Kim CY, Nakai K, Kameo S, Kurokawa N, Liu ZM, Satoh H (2000) Protective effect of melatonin on methylmercury-Induced mortality in mice. Tohoku J Exp Med 191:241–246

    Google Scholar 

  • Klein DC, Weller JL (1970) Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169:1093–1095

    Google Scholar 

  • Klein DC, Berg GR, Weller J (1970) Melatonin synthesis: adenosine 3’,5’-monophosphate and norepinephrine stimulate N-acetyltransferase. Science 168:979–980

    Google Scholar 

  • Klein DC, Weller JL (1972) Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science 177:532–533

    Google Scholar 

  • Klein DC, Buda MJ, Kapoor CL, Krishna G (1978) Pineal serotonin N-acetyltransferase activity: abrupt decrease in adenosine 3’,5’-monophosphate may be signal for “turnoff.” Science 199:309–311

    Google Scholar 

  • Klein DC, Moore RY (1979) Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 174:245–262

    Google Scholar 

  • Klein DC, Smoot R, Weller JL, Higa S, Markey SP, Creed GJ, Jacobowitz DM (1983a) Lesions of the paraventricular nucleus area of the hypothalamus disrupt the suprachiasmatic leads to spinal cord circuit in the melatonin rhythm generating system. Brain Res Bull 10:647–652

    Google Scholar 

  • Klein DC, Sugden D, Weller JL (1983b) Postsynaptic alpha-adrenergic receptors potentiate the beta-adrenergic stimulation of pineal serotonin N-acetyltransferase. Proc Natl Acad Sci U S A 80:599–603

    Google Scholar 

  • Klein DC, Ganguly S, Coon S, Weller JL, Obsil T, Hickman A, Dyda F (2002) 14-3-3 Proteins and photoneuroendocrine transduction: role in controlling the daily rhythm in melatonin. Biochem Soc Trans 30:365–373

    Google Scholar 

  • Kondoh T, Uneyama H, Nishino H, Torii K (2002) Melatonin reduces cerebral edema formation caused by transient forebrain ischemia in rats. Life Sci 72:583–590

    Google Scholar 

  • Kotler M, Rodriguez C, Sainz RM, Antolin I, Menendez-Pelaez A (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24:83–89

    Google Scholar 

  • Krauchi K, Cajochen C, Werth E, Wirz-Justice A (2002) Alteration of internal circadian phase relationships after morning versus evening carbohydrate-rich meals in humans. J Biol Rhythms 17:364–376

    Google Scholar 

  • Krilowicz BL, Szymusiak R, McGinty D (1994) Regulation of posterior lateral hypothalamic arousal related neuronal discharge by preoptic anterior hypothalamic warming. Brain Res 668:30–38

    Google Scholar 

  • la Fleur SE, Kalsbeek A, Wortel J, van der Vliet J, Buijs RM (2001) Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J Neuroendocrinol 13:1025–1032

    Google Scholar 

  • Laakso ML, Hatonen T, Stenberg D, Alila A, Smith S (1993) One-hour exposure to moderate illuminance (500 lux) shifts the human melatonin rhythm. J Pineal Res 15:21–26

    Google Scholar 

  • Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G (2015) Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res 58:397–417

    Google Scholar 

  • Lai H, Singh NP (1997) Melatonin and N-tert-butyl-alpha-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res 22:152–162

    Google Scholar 

  • Lapin IP, Mirzaev SM, Ryzov IV, Oxenkrug GF (1998) Anticonvulsant activity of melatonin against seizures induced by quinolinate, kainate, glutamate, NMDA, and pentylenetetrazole in mice. J Pineal Res 24:215–218

    Google Scholar 

  • Larosa V, Remacle C (2018) Insights into the respiratory chain and oxidative stress. Biosci Rep 38

    Google Scholar 

  • Lavie P (1997) Melatonin: role in gating nocturnal rise in sleep propensity. J Biol Rhythms 12:657–665

    Google Scholar 

  • Leibenluft E, Feldman-Naim S, Turner EH, Schwartz PJ, Wehr TA (1996) Salivary and plasma measures of dim light melatonin onset (DLMO) in patients with rapid cycling bipolar disorder. Biol Psychiatry 40:731–735

    Google Scholar 

  • Leon J, Vives F, Crespo E, Camacho E, Espinosa A, Gallo MA, Escames G, Acuna-Castroviejo D (1998) Modification of nitric oxide synthase activity and neuronal response in rat striatum by melatonin and kynurenine derivatives. J Neuroendocrinol 10:297–302

    Google Scholar 

  • Lerner AB, Case JB, Heinzelman RV (1959) Structure of melatonin. J Am Chem Soc 81:6084–6085

    Google Scholar 

  • Lessing D, Bonini NM (2009) Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat Rev Genet 10:359–370

    Google Scholar 

  • Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210:1267–1269

    Google Scholar 

  • Lewy AJ, Sack RL (1989) The dim light melatonin onset as a marker for circadian phase position. Chronobiol Int 6:93–102

    Google Scholar 

  • Lewy AJ, Ahmed S, Jackson JM, Sack RL (1992) Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int 9:380–392

    Google Scholar 

  • Lewy AJ, Sack RL, Blood ML, Bauer VK, Cutler NL, Thomas KH (1995) Melatonin marks circadian phase position and resets the endogenous circadian pacemaker in humans. Ciba Found Symp 183:303–317; discussion 317–321

    Google Scholar 

  • Lewy AJ, Ahmed S, Sack RL (1996) Phase shifting the human circadian clock using melatonin. Behav Brain Res 73:131–134

    Google Scholar 

  • Lewy AJ, Sack RL (1997) Exogenous melatonin’s phase-shifting effects on the endogenous melatonin profile in sighted humans: a brief review and critique of the literature. J Biol Rhythms 12:588–594

    Google Scholar 

  • Lewy AJ, Bauer VK, Ahmed S, Thomas KH, Cutler NL, Singer CM, Moffit MT, Sack RL (1998) The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int 15:71–83

    Google Scholar 

  • Lewy AJ, Cutler NL, Sack RL (1999) The endogenous melatonin profile as a marker for circadian phase position. J Biol Rhythms 14:227–236

    Google Scholar 

  • Lewy AJ, Bauer VK, Hasler BP, Kendall AR, Pires ML, Sack RL (2001) Capturing the circadian rhythms of free-running blind people with 0.5 mg melatonin. Brain Res 918:96–100

    Google Scholar 

  • Lezoualc’H F, Skutella T, Widmann M, Behl C (1996) Melatonin prevents oxidative stress-induced cell death in hippocampal cells. NeuroReport 7:2071–2077

    Google Scholar 

  • Li XJ, Gu J, Lu SD, Sun FY (2002) Melatonin attenuates MPTP-induced dopaminergic neuronal injury associated with scavenging hydroxyl radical. J Pineal Res 32:47–52

    Google Scholar 

  • Li X, Liao M, Huang J, Xu Z, Lin Z, Ye N, Zhang Z, Peng X (2021) Glycolate oxidase-dependent H2O2 production regulates IAA biosynthesis in rice. BMC Plant Biol 21:326

    Google Scholar 

  • Lieberman HR, Waldhauser F, Garfield G, Lynch HJ, Wurtman RJ (1984) Effects of melatonin on human mood and performance. Brain Res 323:201–207

    Google Scholar 

  • Lima FB, Machado UF, Bartol I, Seraphim PM, Sumida DH, Moraes SM, Hell NS, Okamoto MM, Saad MJ, Carvalho CR, Cipolla-Neto J (1998) Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. Am J Physiol 275:E934–E941

    Google Scholar 

  • Limson J, Nyokong T, Daya S (1998) The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study. J Pineal Res 24:15–21

    Google Scholar 

  • Lin AM, Ho LT (2000) Melatonin suppresses iron-induced neurodegeneration in rat brain. Free Radic Biol Med 28:904–911

    Google Scholar 

  • Liochev SI, Fridovich I (1994) The role of O2.- in the production of HO: in vitro and in vivo. Free Radic Biol Med 16:29–33

    Google Scholar 

  • Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    Google Scholar 

  • Liu F, Ng TB (2000) Effect of pineal indoles on activities of the antioxidant defense enzymes superoxide dismutase, catalase, and glutathione reductase, and levels of reduced and oxidized glutathione in rat tissues. Biochem Cell Biol 78:447–453

    Google Scholar 

  • Lockley SW, Skene DJ, James K, Thapan K, Wright J, Arendt J (2000) Melatonin administration can entrain the free-running circadian system of blind subjects. J Endocrinol 164:R1-6

    Google Scholar 

  • Lockley SW, Dressman MA, Licamele L, Xiao C, Fisher DM, Flynn-Evans EE, Hull JT, Torres R, Lavedan C, Polymeropoulos MH (2015) Tasimelteon for non-24-hour sleep-wake disorder in totally blind people (SET and RESET): two multicentre, randomised, double-masked, placebo-controlled phase 3 trials. Lancet 386:1754–1764

    Google Scholar 

  • Loganathan S, Wilson BA, Carey SB, Manzo E, Joardar A, Ugur B, Zarnescu DC (2022) TDP-43 proteinopathy causes broad metabolic alterations including TCA cycle intermediates and dopamine levels in drosophila models of ALS. Metabolites 12

    Google Scholar 

  • Longoni B, Pryor WA, Marchiafava P (1997) Inhibition of lipid peroxidation by N-acetylserotonin and its role in retinal physiology. Biochem Biophys Res Commun 233:778–780

    Google Scholar 

  • Luboshizsky R, Lavie P (1998) Sleep-inducing effects of exogenous melatonin administration. Sleep Med Rev 2:191–202

    Google Scholar 

  • Lynch HJ, Wurtman RJ, Moskowitz MA, Archer MC, Ho MH (1975) Daily rhythm in human urinary melatonin. Science 187:169–171

    Google Scholar 

  • Macleod MR, O’Collins T, Horky LL, Howells DW, Donnan GA (2005) Systematic review and meta-analysis of the efficacy of melatonin in experimental stroke. J Pineal Res 38:35–41

    Google Scholar 

  • Maeda KI, Lincoln GA (1990) Phase shifts in the circadian rhythm in plasma concentrations of melatonin in rams induced by a 1-hour light pulse. J Biol Rhythms 5:97–106

    Google Scholar 

  • Mahal HS, Sharma HS, Mukherjee T (1999) Antioxidant properties of melatonin: a pulse radiolysis study. Free Radic Biol Med 26:557–565

    Google Scholar 

  • Maharaj DS, Anoopkumar-Dukie S, Glass BD, Antunes EM, Lack B, Walker RB, Daya S (2002) The identification of the UV degradants of melatonin and their ability to scavenge free radicals. J Pineal Res 32:257–261

    Google Scholar 

  • Maharaj DS, Walker RB, Glass BD, Daya S (2003) 6-Hydroxymelatonin protects against cyanide induced oxidative stress in rat brain homogenates. J Chem Neuroanat 26:103–107

    Google Scholar 

  • Maharaj DS, Maharaj H, Antunes EM, Maree DM, Nyokong T, Glass BD, Daya S (2005) 6-Hydroxymelatonin protects against quinolinic-acid-induced oxidative neurotoxicity in the rat hippocampus. J Pharm Pharmacol 57:877–881

    Google Scholar 

  • Maldonado MD, Murillo-Cabezas F, Terron MP, Flores LJ, Tan DX, Manchester LC, Reiter RJ (2007) The potential of melatonin in reducing morbidity-mortality after craniocerebral trauma. J Pineal Res 42:1–11

    Google Scholar 

  • Malmstrom BG (1982) Enzymology of oxygen. Annu Rev Biochem 51:21–59

    Google Scholar 

  • Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W (2000) High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67:3023–3029

    Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59:403–419

    Google Scholar 

  • Manda K, Ueno M, Anzai K (2007) AFMK, a melatonin metabolite, attenuates X-ray-induced oxidative damage to DNA, proteins and lipids in mice. J Pineal Res 42:386–393

    Google Scholar 

  • Manev H, Uz T, Kharlamov A, Joo JY (1996) Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J 10:1546–1551

    Google Scholar 

  • Marczynski TJ, Yamaguchi N, Ling GM, Grodzinska L (1964) Sleep induced by the administration of melatonin (5-methoxyn-acetyltryptamine) to the hypothalamus in unrestrained cats. Experientia 20:435–437

    Google Scholar 

  • Marshall KA, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol Med 21:307–315

    Google Scholar 

  • Martin M, Macias M, Escames G, Leon J, Acuna-Castroviejo D (2000) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 14:1677–1679

    Google Scholar 

  • Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, Cruz-Sanchez F, Chyan YJ, Smith MA, Perry G, Shoji M, Abe K, Leone A, Grundke-Ikbal I, Wilson GL, Ghiso J, Williams C, Refolo LM, Pappolla MA, Chain DG, Neria E (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 85:1101–1108

    Google Scholar 

  • Matuszak Z, Reszka K, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radic Biol Med 23:367–372

    Google Scholar 

  • Mayo JC, Sainz RM, Antoli I, Herrera F, Martin V, Rodriguez C (2002) Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci 59:1706–1713

    Google Scholar 

  • Mayo JC, Tan DX, Sainz RM, Lopez-Burillo S, Reiter RJ (2003a) Oxidative damage to catalase induced by peroxyl radicals: functional protection by melatonin and other antioxidants. Free Radic Res 37:543–553

    Google Scholar 

  • Mayo JC, Tan DX, Sainz RM, Natarajan M, Lopez-Burillo S, Reiter RJ (2003b) Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: comparative effects of melatonin and other antioxidants. Biochim Biophys Acta 1620:139–150

    Google Scholar 

  • Mayo JC, Sainz RM, Tan DX, Hardeland R, Leon J, Rodriguez C, Reiter RJ (2005) Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 165:139–149

    Google Scholar 

  • McArthur AJ, Gillette MU, Prosser RA (1991) Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res 565:158–161

    Google Scholar 

  • McArthur AJ, Lewy AJ, Sack RL (1996) Non-24-hour sleep-wake syndrome in a sighted man: circadian rhythm studies and efficacy of melatonin treatment. Sleep 19:544–553

    Google Scholar 

  • McCay PB (1985) Vitamin E: interactions with free radicals and ascorbate. Annu Rev Nutr 5:323–340

    Google Scholar 

  • McCord JM, Omar BA (1993) Sources of free radicals. Toxicol Ind Health 9:23–37

    Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    Google Scholar 

  • McMullan CJ, Curhan GC, Schernhammer ES, Forman JP (2013) Association of nocturnal melatonin secretion with insulin resistance in nondiabetic young women. Am J Epidemiol 178:231–238

    Google Scholar 

  • Melchiorri D, Reiter RJ, Chen LD, Sewerynek E, Nistico G (1996) Melatonin affords protection against kainate-induced in vitro lipid peroxidation in brain. Eur J Pharmacol 305:239–242

    Google Scholar 

  • Mellado C, Rodriguez V, de Diego JG, Alvarez E, Blazquez E (1989) Effect of pinealectomy and of diabetes on liver insulin and glucagon receptor concentrations in the rat. J Pineal Res 6:295–306

    Google Scholar 

  • Mendelson WB (1997a) A critical evaluation of the hypnotic efficacy of melatonin. Sleep 20:916–919

    Google Scholar 

  • Mendelson WB (1997b) Efficacy of melatonin as a hypnotic agent. J Biol Rhythms 12:651–656

    Google Scholar 

  • Menendez-Pelaez A, Reiter RJ (1993) Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 15:59–69

    Google Scholar 

  • Menendez-Pelaez A, Poeggeler B, Reiter RJ, Barlow-Walden L, Pablos MI, Tan DX (1993) Nuclear localization of melatonin in different mammalian tissues: immunocytochemical and radioimmunoassay evidence. J Cell Biochem 53:373–382

    Google Scholar 

  • Mennenga K, Ueck M, Reiter RJ (1991) Immunohistological localization of melatonin in the pineal gland and retina of the rat. J Pineal Res 10:159–164

    Google Scholar 

  • Mesenge C, Margaill I, Verrecchia C, Allix M, Boulu RG, Plotkine M (1998) Protective effect of melatonin in a model of traumatic brain injury in mice. J Pineal Res 25:41–46

    Google Scholar 

  • Mevissen M, Ebert U (1998) Anticonvulsant effects of melatonin in amygdala-kindled rats. Neurosci Lett 257:13–16

    Google Scholar 

  • Middleton B, Arendt J, Stone BM (1997) Complex effects of melatonin on human circadian rhythms in constant dim light. J Biol Rhythms 12:467–477

    Google Scholar 

  • Milcu I, Nanu L, Marcean R, Sitaru S (1963) The action of pineal extract and epiphysectomy on hepatic and muscular glycogen after prolonged infusion of glucose. Stud Cercet Endocrinol 14:651–655

    Google Scholar 

  • Mishima K, Satoh K, Shimizu T, Hishikawa Y (1997) Hypnotic and hypothermic action of daytime-administered melatonin. Psychopharmacology 133:168–171

    Google Scholar 

  • Miyazawa T, Burdeos GC, Itaya M, Nakagawa K, Miyazawa T (2019) Vitamin E: regulatory redox interactions. IUBMB Life 71:430–441

    Google Scholar 

  • Mohammadi F, Shakiba S, Mehrzadi S, Afshari K, Rahimnia AH, Dehpour AR (2020) Anticonvulsant effect of melatonin through ATP-sensitive channels in mice. Fundam Clin Pharmacol 34:148–155

    Google Scholar 

  • Mohanan PV, Yamamoto HA (2002) Preventive effect of melatonin against brain mitochondria DNA damage, lipid peroxidation and seizures induced by kainic acid. Toxicol Lett 129:99–105

    Google Scholar 

  • Molina-Carballo A, Munoz-Hoyos A, Reiter RJ, Sanchez-Forte M, Moreno-Madrid F, Rufo-Campos M, Molina-Font JA, Acuna-Castroviejo D (1997) Utility of high doses of melatonin as adjunctive anticonvulsant therapy in a child with severe myoclonic epilepsy: two years’ experience. J Pineal Res 23:97–105

    Google Scholar 

  • Moore RY (1996) Neural control of the pineal gland. Behav Brain Res 73:125–130

    Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol 146:1–14

    Google Scholar 

  • Morioka N, Okatani Y, Wakatsuki A (1999) Melatonin protects against age-related DNA damage in the brains of female senescence-accelerated mice. J Pineal Res 27:202–209

    Google Scholar 

  • Muench A, Vargas I, Grandner MA, Ellis JG, Posner D, Bastien CH, Drummond SP, Perlis ML (2022) We know CBT-I works, now what? Fac Rev 11:4

    Google Scholar 

  • Murch SJ, Simmons CB, Saxena PK (1997) Melatonin in feverfew and other medicinal plants. Lancet 350:1598–1599

    Google Scholar 

  • Nakagawa H, Isaki K, Sack RL, Lewy AJ (1992a) Free-running melatonin, sleep propensity, cortisol and temperature rhythms in a totally blind person. Jpn J Psychiatry Neurol 46:210–212

    Google Scholar 

  • Nakagawa H, Sack RL, Lewy AJ (1992b) Sleep propensity free-runs with the temperature, melatonin and cortisol rhythms in a totally blind person. Sleep 15:330–336

    Google Scholar 

  • Nathan AT, Singer M (1999) The oxygen trail: tissue oxygenation. Br Med Bull 55:96–108

    Google Scholar 

  • Nave R, Peled R, Lavie P (1995) Melatonin improves evening napping. Eur J Pharmacol 275:213–216

    Google Scholar 

  • Ng TB, Liu F, Zhao L (2000) Antioxidative and free radical scavenging activities of pineal indoles. J Neural Transm (vienna) 107:1243–1251

    Google Scholar 

  • Niki E, Noguchi N, Gotoh N (1993) Dynamics of lipid peroxidation and its inhibition by antioxidants. Biochem Soc Trans 21:313–317

    Google Scholar 

  • Noda Y, Mori A, Liburdy R, Packer L (1999) Melatonin and its precursors scavenge nitric oxide. J Pineal Res 27:159–163

    Google Scholar 

  • Nogueira TC, Lellis-Santos C, Jesus DS, Taneda M, Rodrigues SC, Amaral FG, Lopes AM, Cipolla-Neto J, Bordin S, Anhe GF (2011) Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology 152:1253–1263

    Google Scholar 

  • Okatani Y, Wakatsuki A, Kaneda C (2000) Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. J Pineal Res 28:89–96

    Google Scholar 

  • Onuki J, Almeida EA, Medeiros MH, di Mascio P (2005) Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, quercetin or resveratrol. J Pineal Res 38:107–115

    Google Scholar 

  • Ozdemir D, Tugyan K, Uysal N, Sonmez U, Sonmez A, Acikgoz O, Ozdemir N, Duman M, Ozkan H (2005) Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neurosci Lett 385:234–239

    Google Scholar 

  • Ozturk G, Coskun S, Erbas D, Hasanoglu E (2000) The effect of melatonin on liver superoxide dismutase activity, serum nitrate and thyroid hormone levels. Jpn J Physiol 50:149–153

    Google Scholar 

  • Pablos MI, Agapito MT, Gutierrez R, Recio JM, Reiter RJ, Barlow-Walden L, Acuna-Castroviejo D, Menendez-Pelaez A (1995) Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J Pineal Res 19:111–115

    Google Scholar 

  • Pablos MI, Reiter RJ, Ortiz GG, Guerrero JM, Agapito MT, Chuang JI, Sewerynek E (1998) Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 32:69–75

    Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Google Scholar 

  • Pahkla R, Zilmer M, Kullisaar T, Rago L (1998) Comparison of the antioxidant activity of melatonin and pinoline in vitro. J Pineal Res 24:96–101

    Google Scholar 

  • Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436

    Google Scholar 

  • Pandi-Perumal SR, Smits M, Spence W, Srinivasan V, Cardinali DP, Lowe AD, Kayumov L (2007) Dim light melatonin onset (DLMO): a tool for the analysis of circadian phase in human sleep and chronobiological disorders. Prog Neuropsychopharmacol Biol Psychiatry 31:1–11

    Google Scholar 

  • Pappolla MA, Chyan YJ, Poeggeler B, Bozner P, Ghiso J, Ledoux SP, Wilson GL (1999) Alzheimer beta protein mediated oxidative damage of mitochondrial DNA: prevention by melatonin. J Pineal Res 27:226–229

    Google Scholar 

  • Pappolla MA, Simovich MJ, Bryant-Thomas T, Chyan YJ, Poeggeler B, Dubocovich M, Bick R, Perry G, Cruz-Sanchez F, Smith MA (2002) The neuroprotective activities of melatonin against the Alzheimer beta-protein are not mediated by melatonin membrane receptors. J Pineal Res 32:135–142

    Google Scholar 

  • Parmar P, Limson J, Nyokong T, Daya S (2002) Melatonin protects against copper-mediated free radical damage. J Pineal Res 32:237–242

    Google Scholar 

  • Paterniti I, Cordaro M, Esposito E, Cuzzocrea S (2016) The antioxidative property of melatonin against brain ischemia. Expert Rev Neurother 16:841–848

    Google Scholar 

  • Pei Z, Ho HT, Cheung RT (2002a) Pre-treatment with melatonin reduces volume of cerebral infarction in a permanent middle cerebral artery occlusion stroke model in the rat. Neurosci Lett 318:141–144

    Google Scholar 

  • Pei Z, Pang SF, Cheung RT (2002b) Pretreatment with melatonin reduces volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. J Pineal Res 32:168–172

    Google Scholar 

  • Pei Z, Pang SF, Cheung RT (2003) Administration of melatonin after onset of ischemia reduces the volume of cerebral infarction in a rat middle cerebral artery occlusion stroke model. Stroke 34:770–775

    Google Scholar 

  • Peled N, Shorer Z, Peled E, Pillar G (2001) Melatonin effect on seizures in children with severe neurologic deficit disorders. Epilepsia 42:1208–1210

    Google Scholar 

  • Perez-Gonzalez A, Castaneda-Arriaga R, Alvarez-Idaboy JR, Reiter RJ, Galano A (2019) Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J Pineal Res 66:e12539

    Google Scholar 

  • Perlow MJ, Reppert SM, Boyar RM, Klein DC (1981) Daily rhythms in cortisol and melatonin in primate cerebrospinal fluid. Effects of constant light and dark. Neuroendocrinology 32:193–196

    Google Scholar 

  • Peterson SL, Albertson TE, Lakin ML, Bowyer JR, Winters WD, Stark LG (1981) Anticonvulsant properties of melatonin on seizures in mice. Proc West Pharmacol Soc 24:7–10

    Google Scholar 

  • Philo R, Reiter RJ (1978) Characterization of pinealectomy induced convulsions in the Mongolian gerbil (Meriones unguiculatus). Epilepsia 19:485–492

    Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:PL271–PL276

    Google Scholar 

  • Pieri C, Moroni F, Marra M, Marcheselli F, Recchioni R (1995) Melatonin is an efficient antioxidant. Arch Gerontol Geriatr 20:159–165

    Google Scholar 

  • Pires ML, Benedito-Silva AA, Pinto L, Souza L, Vismari L, Calil HM (2001) Acute effects of low doses of melatonin on the sleep of young healthy subjects. J Pineal Res 31:326–332

    Google Scholar 

  • Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    Google Scholar 

  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1994) Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci 55:PL455–PL460

    Google Scholar 

  • Pozo D, Reiter RJ, Calvo JR, Guerrero JM (1997) Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 65:430–442

    Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699-722

    Google Scholar 

  • Qi W, Reiter RJ, Tan DX, Manchester LC, Siu AW, Garcia JJ (2000) Increased levels of oxidatively damaged DNA induced by chromium(III) and H2O2: protection by melatonin and related molecules. J Pineal Res 29:54–61

    Google Scholar 

  • Radi R (2018) Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci U S A 115:5839–5848

    Google Scholar 

  • Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E (2018) Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol 17:297–314

    Google Scholar 

  • Ralph CL, Mull D, Lynch HJ, Hedlund L (1971) A melatonin rhythm persists in rat pineals in darkness. Endocrinology 89:1361–1366

    Google Scholar 

  • Redman J, Armstrong S, Ng KT (1983) Free-running activity rhythms in the rat: entrainment by melatonin. Science 219:1089–1091

    Google Scholar 

  • Redman JR, Francis AJ (1998) Entrainment of rat circadian rhythms by the melatonin agonist S-20098 requires intact suprachiasmatic nuclei but not the pineal. J Biol Rhythms 13:39–51

    Google Scholar 

  • Reid K, van den Heuvel C, Dawson D (1996) Day-time melatonin administration: effects on core temperature and sleep onset latency. J Sleep Res 5:150–154

    Google Scholar 

  • Reiter RJ, Morgan WW (1972) Attempts to characterize the convulsive response of parathyroidectomized rats to pineal gland removal. Physiol Behav 9:203–208

    Google Scholar 

  • Reiter RJ (1985) Action spectra, dose-response relationships, and temporal aspects of light’s effects on the pineal gland. Ann N Y Acad Sci 453:215–230

    Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    Google Scholar 

  • Reiter RJ, Tan DX, Poeggeler B, Menendez-Pelaez A, Chen LD, Saarela S (1994) Melatonin as a free radical scavenger: implications for aging and age-related diseases. Ann N Y Acad Sci 719:1–12

    Google Scholar 

  • Reiter RJ (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9:526–533

    Google Scholar 

  • Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L, Chuang J, Ortiz GG, Acuna-Castroviejo D (1995) A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res 18:1–11

    Google Scholar 

  • Reiter RJ (1998a) Melatonin, active oxygen species and neurological damage. Drug News Perspect 11:291–296

    Google Scholar 

  • Reiter RJ (1998b) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384

    Google Scholar 

  • Reiter RJ, Tan D, Kim SJ, Manchester LC, Qi W, Garcia JJ, Cabrera JC, El-Sokkary G, Rouvier-Garay V (1999) Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mech Ageing Dev 110:157–173

    Google Scholar 

  • Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001a) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Google Scholar 

  • Reiter RJ, Tan DX, Burkhardt S, Manchester LC (2001b) Melatonin in plants. Nutr Rev 59:286–290

    Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Qi W (2001c) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34:237–256

    Google Scholar 

  • Reiter RJ, Tan DX, Allegra M (2002a) Melatonin: reducing molecular pathology and dysfunction due to free radicals and associated reactants. Neuro Endocrinol Lett 23(Suppl 1):3–8

    Google Scholar 

  • Reiter RJ, Tan DX, Burkhardt S (2002b) Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 123:1007–1019

    Google Scholar 

  • Reiter RJ, Sainz RM, Lopez-Burillo S, Mayo JC, Manchester LC, Tan DX (2003) Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke. Ann N Y Acad Sci 993:35–47; discussion 48–53

    Google Scholar 

  • Reiter RJ, Manchester LC, Tan DX (2005) Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 21:920–924

    Google Scholar 

  • Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z (2007) Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol 54:1–9

    Google Scholar 

  • Reiter RJ, Tan DX, Rosales-Corral S, Manchester LC (2013) The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini Rev Med Chem 13:373–384

    Google Scholar 

  • Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D (2018a) Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci 19

    Google Scholar 

  • Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B (2018b) Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules 23

    Google Scholar 

  • Reppert SM, Perlow MJ, Tamarkin L, Orloff D, Klein DC (1981) The effects of environmental lighting on the daily melatonin rhythm in primate cerebrospinal fluid. Brain Res 223:313–323

    Google Scholar 

  • Reppert SM, Weaver DR, Rivkees SA, Stopa EG (1988) Putative melatonin receptors in a human biological clock. Science 242:78–81

    Google Scholar 

  • Ressmeyer AR, Mayo JC, Zelosko V, Sainz RM, Tan DX, Poeggeler B, Antolin I, Zsizsik BK, Reiter RJ, Hardeland R (2003) Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. Redox Rep 8:205–213

    Google Scholar 

  • Rice-Evans C, Burdon R (1993) Free radical-lipid interactions and their pathological consequences. Prog Lipid Res 32:71–110

    Google Scholar 

  • Ritzenthaler T, Nighoghossian N, Berthiller J, Schott AM, Cho TH, Derex L, Brun J, Trouillas P, Claustrat B (2009) Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke. J Pineal Res 46:349–352

    Google Scholar 

  • Ritzenthaler T, Lhommeau I, Douillard S, Cho TH, Brun J, Patrice T, Nighoghossian N, Claustrat B (2013) Dynamics of oxidative stress and urinary excretion of melatonin and its metabolites during acute ischemic stroke. Neurosci Lett 544:1–4

    Google Scholar 

  • Rivkees SA, Cassone VM, Weaver DR, Reppert SM (1989) Melatonin receptors in chick brain: characterization and localization. Endocrinology 125:363–368

    Google Scholar 

  • Rodriguez V, Mellado C, Alvarez E, de Diego JG, Blazquez E (1989) Effect of pinealectomy on liver insulin and glucagon receptor concentrations in the rat. J Pineal Res 6:77–88

    Google Scholar 

  • Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Google Scholar 

  • Rollag MD, Niswender GD (1976) Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens. Endocrinology 98:482–489

    Google Scholar 

  • Rollag MD, O’Callaghan PL, Niswender GD (1978) Serum melatonin concentrations during different stages of the annual reproductive cycle in ewes. Biol Reprod 18:279–285

    Google Scholar 

  • Romero MP, Osuna C, Garcia-Perganeda A, Carrillo-Vico A, Guerrero JM (1999) The pineal secretory product melatonin reduces hydrogen peroxide-induced DNA damage in U-937 cells. J Pineal Res 26:227–235

    Google Scholar 

  • Ronkainen H, Vakkuri O, Kauppila A (1986) Effects of physical exercise on the serum concentration of melatonin in female runners. Acta Obstet Gynecol Scand 65:827–829

    Google Scholar 

  • Roseboom PH, Coon SL, Baler R, McCune SK, Weller JL, Klein DC (1996) Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology 137:3033–3045

    Google Scholar 

  • Roth T, Richardson G (1997) Commentary: is melatonin administration an effective hypnotic? J Biol Rhythms 12:666–669

    Google Scholar 

  • Rothhaas R, Chung S (2021) Role of the preoptic area in sleep and thermoregulation. Front Neurosci 15:664781

    Google Scholar 

  • Rozov SV, Filatova EV, Orlov AA, Volkova AV, Zhloba AR, Blashko EL, Pozdeyev NV (2003) N1-acetyl-N2-formyl-5-methoxykynuramine is a product of melatonin oxidation in rats. J Pineal Res 35:245–250

    Google Scholar 

  • Rudeen PK, Philo RC, Symmes SK (1980) Antiepileptic effects of melatonin in the pinealectomized Mongolian gerbil. Epilepsia 21:149–154

    Google Scholar 

  • Saarela S, Reiter RJ (1994) Function of melatonin in thermoregulatory processes. Life Sci 54:295–311

    Google Scholar 

  • Sack RL, Lewy AJ (1993) Human circadian rhythms: lessons from the blind. Ann Med 25:303–305

    Google Scholar 

  • Sack RL, Lewy AJ (1997) Melatonin as a chronobiotic: treatment of circadian desynchrony in night workers and the blind. J Biol Rhythms 12:595–603

    Google Scholar 

  • Sack RL, Hughes RJ, Edgar DM, Lewy AJ (1997) Sleep-promoting effects of melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep 20:908–915

    Google Scholar 

  • Sack RL, Brandes RW, Kendall AR, Lewy AJ (2000) Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med 343:1070–1077

    Google Scholar 

  • Sadun AA, Schaechter JD, Smith LE (1984) A retinohypothalamic pathway in man: light mediation of circadian rhythms. Brain Res 302:371–377

    Google Scholar 

  • Sae-Teaw M, Johns J, Johns NP, Subongkot S (2013) Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J Pineal Res 55:58–64

    Google Scholar 

  • Said ES, Ahmed RM, Mohammed RA, Morsi EM, Elmahdi MH, Elsayed HS, Mahmoud RH, Nadwa EH (2021) Ameliorating effect of melatonin on mercuric chloride-induced neurotoxicity in rats. Heliyon 7:e07485

    Google Scholar 

  • Sarrafzadeh AS, Thomale UW, Kroppenstedt SN, Unterberg AW (2000) Neuroprotective effect of melatonin on cortical impact injury in the rat. Acta Neurochir (wien) 142:1293–1299

    Google Scholar 

  • Sasaki H, Zhang Y, Emala Sr CW, Mizuta K (2021) Melatonin MT2 receptor is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 321:L991–L1005

    Google Scholar 

  • Schaefer M, Hardeland R (2009) The melatonin metabolite N-acetyl-5-methoxykynuramine is a potent singlet oxygen scavenger. J Pineal Res 46:49–52

    Google Scholar 

  • Schuhler S, Pitrosky B, Kirsch R, Pevet P (2002) Entrainment of locomotor activity rhythm in pinealectomized adult Syrian hamsters by daily melatonin infusion. Behav Brain Res 133:343–350

    Google Scholar 

  • Seegar H, Mueck AO, Lippert TH (1997) Effect of melatonin and metabolites on copper-mediated oxidation of flow density lipoprotein. Br J Clin Pharmacol 44:283–284

    Google Scholar 

  • Seifman MA, Adamides AA, Nguyen PN, Vallance SA, Cooper DJ, Kossmann T, Rosenfeld JV, Morganti-Kossmann MC (2008) Endogenous melatonin increases in cerebrospinal fluid of patients after severe traumatic brain injury and correlates with oxidative stress and metabolic disarray. J Cereb Blood Flow Metab 28:684–696

    Google Scholar 

  • Sewerynek E, Melchiorri D, Ortiz GG, Poeggeler B, Reiter RJ (1995a) Melatonin reduces H2O2-induced lipid peroxidation in homogenates of different rat brain regions. J Pineal Res 19:51–56

    Google Scholar 

  • Sewerynek E, Poeggeler B, Melchiorri D, Reiter RJ (1995b) H2O2-induced lipid peroxidation in rat brain homogenates is greatly reduced by melatonin. Neurosci Lett 195:203–205

    Google Scholar 

  • Sewerynek E, Ortiz GG, Reiter RJ, Pablos MI, Melchiorri D, Daniels WM (1996) Lipopolysaccharide-induced DNA damage is greatly reduced in rats treated with the pineal hormone melatonin. Mol Cell Endocrinol 117:183–188

    Google Scholar 

  • Shaikh AY, Xu J, Wu Y, He L, Hsu CY (1997) Melatonin protects bovine cerebral endothelial cells from hyperoxia-induced DNA damage and death. Neurosci Lett 229:193–197

    Google Scholar 

  • Shanahan TL, Czeisler CA (1991) Light exposure induces equivalent phase shifts of the endogenous circadian rhythms of circulating plasma melatonin and core body temperature in men. J Clin Endocrinol Metab 73:227–235

    Google Scholar 

  • Sharma VK, Chandrashekaran MK, Singaravel M, Subbaraj R (1999) In the field mouse Mus booduga melatonin phase response curves (PRCs) have a different time course and wave form relative to light PRC. J Pineal Res 26:153–157

    Google Scholar 

  • Shen YX, Xu SY, Wei W, Sun XX, Liu LH, Yang J, Dong C (2002a) The protective effects of melatonin from oxidative damage induced by amyloid beta-peptide 25–35 in middle-aged rats. J Pineal Res 32:85–89

    Google Scholar 

  • Shen YX, Xu SY, Wei W, Wang XL, Wang H, Sun X (2002b) Melatonin blocks rat hippocampal neuronal apoptosis induced by amyloid beta-peptide 25–35. J Pineal Res 32:163–167

    Google Scholar 

  • Shida CS, Castrucci AM, Lamy-Freund MT (1994) High melatonin solubility in aqueous medium. J Pineal Res 16:198–201

    Google Scholar 

  • Shochat T, Luboshitzky R, Lavie P (1997) Nocturnal melatonin onset is phase locked to the primary sleep gate. Am J Physiol 273:R364–R370

    Google Scholar 

  • Silva SO, Ximenes VF, Livramento JA, Catalani LH, Campa A (2005) High concentrations of the melatonin metabolite, N1-acetyl-N2-formyl-5-methoxykynuramine, in cerebrospinal fluid of patients with meningitis: a possible immunomodulatory mechanism. J Pineal Res 39:302–306

    Google Scholar 

  • Simko F, Reiter RJ, Pechanova O, Paulis L (2013) Experimental models of melatonin-deficient hypertension. Front Biosci (landmark Ed) 18:616–625

    Google Scholar 

  • Simonson SG, Zhang J, Canada Jr AT, Su YF, Benveniste H, Piantadosi CA (1993) Hydrogen peroxide production by monoamine oxidase during ischemia-reperfusion in the rat brain. J Cereb Blood Flow Metab 13:125–134

    Google Scholar 

  • Sinha K, Degaonkar MN, Jagannathan NR, Gupta YK (2001) Effect of melatonin on ischemia reperfusion injury induced by middle cerebral artery occlusion in rats. Eur J Pharmacol 428:185–192

    Google Scholar 

  • Skaper SD, Ancona B, Facci L, Franceschini D, Giusti P (1998) Melatonin prevents the delayed death of hippocampal neurons induced by enhanced excitatory neurotransmission and the nitridergic pathway. FASEB J 12:725–731

    Google Scholar 

  • Skene DJ, Lockley SW, James K, Arendt J (1999) Correlation between urinary cortisol and 6-sulphatoxymelatonin rhythms in field studies of blind subjects. Clin Endocrinol (oxf) 50:715–719

    Google Scholar 

  • Skrinar GS, Bullen BA, Reppert SM, Peachey SE, Turnbull BA, McArthur JW (1989) Melatonin response to exercise training in women. J Pineal Res 7:185–194

    Google Scholar 

  • Sliwinski T, Rozej W, Morawiec-Bajda A, Morawiec Z, Reiter R, Blasiak J (2007) Protective action of melatonin against oxidative DNA damage: chemical inactivation versus base-excision repair. Mutat Res 634:220–227

    Google Scholar 

  • Song CK, Bartness TJ, Petersen SL, Bittman EL (2000) Co-expression of melatonin (MEL1a) receptor and arginine vasopressin mRNAs in the Siberian hamster suprachiasmatic nucleus. J Neuroendocrinol 12:627–634

    Google Scholar 

  • Southgate GS, Daya S, Potgieter B (1998) Melatonin plays a protective role in quinolinic acid-induced neurotoxicity in the rat hippocampus. J Chem Neuroanat 14:151–156

    Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science, 257:1220–1224

    Google Scholar 

  • Stasica P, Paneth P, Rosiak JM (2000) Hydroxyl radical reaction with melatonin molecule: a computational study. J Pineal Res 29:125–127

    Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Google Scholar 

  • Stone BM, Turner C, Mills SL, Nicholson AN (2000) Hypnotic activity of melatonin. Sleep 23:663–669

    Google Scholar 

  • Strassman RJ, Appenzeller O, Lewy AJ, Qualls CR, Peake GT (1989) Increase in plasma melatonin, beta-endorphin, and cortisol after a 28.5-mile mountain race: relationship to performance and lack of effect of naltrexone. J Clin Endocrinol Metab 69:540–545

    Google Scholar 

  • Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB (1985) Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 314:359–361

    Google Scholar 

  • Susa N, Ueno S, Furukawa Y, Ueda J, Sugiyama M (1997) Potent protective effect of melatonin on chromium(VI)-induced DNA single-strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 144:377–384

    Google Scholar 

  • Tabuchi M, Lone SR, Liu S, Liu Q, Zhang J, Spira AP, Wu MN (2015) Sleep interacts with abeta to modulate intrinsic neuronal excitability. Curr Biol 25:702–712

    Google Scholar 

  • Takahashi JS, Hamm H, Menaker M (1980) Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc Natl Acad Sci U S A 77:2319–2322

    Google Scholar 

  • Tan DX, Poeggeler B, Reiter RJ, Chen LD, Chen S, Manchester LC, Barlow-Walden LR (1993) The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett 70:65–71

    Google Scholar 

  • Tan D, Reiter RJ, Chen LD, Poeggeler B, Manchester LC, Barlow-Walden LR (1994) Both physiological and pharmacological levels of melatonin reduce DNA adduct formation induced by the carcinogen safrole. Carcinogenesis 15:215–218

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LJ, Weintraub ST, Vijayalaxmi, Shepherd AM (1998a) A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun 253:614–620

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH (1998b) Melatonin protects hippocampal neurons in vivo against kainic acid-induced damage in mice. J Neurosci Res 54:382–389

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF (1999) Cyclic 3-hydroxymelatonin: a melatonin metabolite generated as a result of hydroxyl radical scavenging. Biol Signals Recept 8:70–74

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintraub ST, Qi W (2000a) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 29:1177–1185

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000b) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9:137–159

    Google Scholar 

  • Tan DX, Manchester LC, Burkhardt S, Sainz RM, Mayo JC, Kohen R, Shohami E, Huo YS, Hardeland R, Reiter RJ (2001) N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 15:2294–2296

    Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 85:607–623

    Google Scholar 

  • Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Galano A, Reiter RJ (2014a) Cyclic-3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicals and suppresses oxidative reactions. Curr Med Chem 21:1557–1565

    Google Scholar 

  • Tan DX, Zheng X, Kong J, Manchester LC, Hardeland R, Kim SJ, Xu X, Reiter RJ (2014b) Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci 15:15858–15890

    Google Scholar 

  • Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886–18906

    Google Scholar 

  • Tan DX, Reiter RJ (2020) An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J Exp Bot 71:4677–4689

    Google Scholar 

  • Teclemariam-Mesbah R, ter Horst GJ, Postema F, Wortel J, Buijs RM (1999) Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J Comp Neurol 406:171–182

    Google Scholar 

  • Thomas EM, Armstrong SM (1988) Melatonin administration entrains female rat activity rhythms in constant darkness but not in constant light. Am J Physiol 255:R237–R242

    Google Scholar 

  • Tomas-Zapico C, Coto-Montes A (2005) A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 39:99–104

    Google Scholar 

  • Tunez I, Munoz Mdel C, Feijoo M, Munoz-Castaneda JR, Bujalance I, Valdelvira ME, Montilla Lopez P (2003) Protective melatonin effect on oxidative stress induced by okadaic acid into rat brain. J Pineal Res 34:265–268

    Google Scholar 

  • Underwood H, Harless M (1985) Entrainment of the circadian activity rhythm of a lizard to melatonin injections. Physiol Behav 35:267–270

    Google Scholar 

  • Underwood H (1986) Circadian rhythms in lizards: phase response curve for melatonin. J Pineal Res 3:187–196

    Google Scholar 

  • Urata Y, Honma S, Goto S, Todoroki S, Iida T, Cho S, Honma K, Kondo T (1999) Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic Biol Med 27:838–847

    Google Scholar 

  • Uz T, Giusti P, Franceschini D, Kharlamov A, Manev H (1996) Protective effect of melatonin against hippocampal DNA damage induced by intraperitoneal administration of kainate to rats. Neuroscience 73:631–636

    Google Scholar 

  • Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C, Garcia-Corzo L, Lopez LC, Reiter RJ, Acuna-Castroviejo D (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52:217–227

    Google Scholar 

  • Vinogradova I, Anisimov V (2013) Melatonin prevents the development of the metabolic syndrome in male rats exposed to different light/dark regimens. Biogerontology 14:401–409

    Google Scholar 

  • Viswanathan M, Laitinen JT, Saavedra JM (1990) Expression of melatonin receptors in arteries involved in thermoregulation. Proc Natl Acad Sci U S A 87:6200–6203

    Google Scholar 

  • Vlkolinsky R, Stolc S (1999) Effects of stobadine, melatonin, and other antioxidants on hypoxia/reoxygenation-induced synaptic transmission failure in rat hippocampal slices. Brain Res 850:118–126

    Google Scholar 

  • Vlkolinsky R, Stolc S, Ross A (1999) Effect of stobadine, U-74389G, trolox and melatonin on resistance of rat hippocampal slices to oxidative stress. Life Sci 65:1969–1971

    Google Scholar 

  • Vural H, Sabuncu T, Arslan SO, Aksoy N (2001) Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. J Pineal Res 31:193–198

    Google Scholar 

  • Wakatsuki A, Okatani Y, Izumiya C, Ikenoue N (1999) Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain. J Pineal Res 26:147–152

    Google Scholar 

  • Wakatsuki A, Okatani Y, Shinohara K, Ikenoue N, Fukaya T (2001) Melatonin protects against ischemia/reperfusion-induced oxidative damage to mitochondria in fetal rat brain. J Pineal Res 31:167–172

    Google Scholar 

  • Waldhauser F, Saletu B, Trinchard-Lugan I (1990) Sleep laboratory investigations on hypnotic properties of melatonin. Psychopharmacology 100:222–226

    Google Scholar 

  • Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL, Kristal BS, Friedlander RM (2009) Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 40:1877–1885

    Google Scholar 

  • Wang C, Wang Z, Zeng B, Zheng M, Xiao N, Zhao Z (2021) Fenton-like reaction of the iron(II)-histidine complex generates hydroxyl radicals: implications for oxidative stress and Alzheimer’s disease. Chem Commun (camb) 57:12293–12296

    Google Scholar 

  • Warren WS, Hodges DB, Cassone VM (1993) Pinealectomized rats entrain and phase-shift to melatonin injections in a dose-dependent manner. J Biol Rhythms 8:233–245

    Google Scholar 

  • Weaver DR, Rivkees SA, Reppert SM (1989) Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. J Neurosci 9:2581–2590

    Google Scholar 

  • Wehr TA (1991) The durations of human melatonin secretion and sleep respond to changes in daylength (photoperiod). J Clin Endocrinol Metab 73:1276–1280

    Google Scholar 

  • Wehr TA (1996) A ‘clock for all seasons’ in the human brain. Prog Brain Res, 111:321–342

    Google Scholar 

  • Weishaupt JH, Bartels C, Polking E, Dietrich J, Rohde G, Poeggeler B, Mertens N, Sperling S, Bohn M, Huther G, Schneider A, Bach A, Siren AL, Hardeland R, Bahr M, Nave KA, Ehrenreich H (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 41:313–323

    Google Scholar 

  • Weitzman ED, Weinberg U, D’eletto R, Lynch H, Wurtman RJ, Czeisler C, Erlich S (1978) Studies of the 24 hour rhythm of melatonin in man. J Neural Transm Suppl 325–337

    Google Scholar 

  • Wichmann MW, Zellweger R, Demaso CM, Ayala A, Chaudry IH (1996) Increased melatonin levels after hemorrhagic shock in male and female C3H/HeN mice. Experientia 52:587–590

    Google Scholar 

  • Williams MJ, Perland E, Eriksson MM, Carlsson J, Erlandsson D, Laan L, Mahebali T, Potter E, Frediksson R, Benedict C, Schioth HB (2016) Recurrent sleep fragmentation induces insulin and neuroprotective mechanisms in middle-aged flies. Front Aging Neurosci 8:180

    Google Scholar 

  • Wirz-Justice A, Armstrong SM (1996) Melatonin: nature’s soporific? J Sleep Res 5:137–141

    Google Scholar 

  • Wolden-Hanson T, Mitton DR, McCants RL, Yellon SM, Wilkinson CW, Matsumoto AM, Rasmussen DD (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141:487–497

    Google Scholar 

  • Wolfler A, Abuja PM, Schauenstein K, Liebmann PM (1999) N-acetylserotonin is a better extra- and intracellular antioxidant than melatonin. FEBS Lett 449:206–210

    Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    Google Scholar 

  • Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, van Heerikhuize J, Swaab DF (2006) Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J Comp Neurol 499:897–910

    Google Scholar 

  • Yahyavi-Firouz-abadi N, Tahsili-Fahadan P, Riazi K, Ghahremani MH, Dehpour AR (2006) Involvement of nitric oxide pathway in the acute anticonvulsant effect of melatonin in mice. Epilepsy Res 68:103–113

    Google Scholar 

  • Yamamoto H, Tang HW (1996) Preventive effect of melatonin against cyanide-induced seizures and lipid peroxidation in mice. Neurosci Lett 207:89–92

    Google Scholar 

  • Yamamoto HA, Mohanan PV (2001a) Effects of melatonin on paraquat or ultraviolet light exposure-induced DNA damage. J Pineal Res 31:308–313

    Google Scholar 

  • Yamamoto HA, Mohanan PV (2001b) Preventive effect of melatonin against DNA damage induced by cyanide, kainate, glutathione/Fe(3+)/O(2), or H(2)O(2)/Fe(2+). J Pineal Res 31:314–319

    Google Scholar 

  • Yamamoto HA, Mohanan PV (2002) Melatonin attenuates brain mitochondria DNA damage induced by potassium cyanide in vivo and in vitro. Toxicology 179:29–36

    Google Scholar 

  • Yamamoto HA, Mohanan PV (2003) Ganglioside GT1B and melatonin inhibit brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Brain Res 964:100–106

    Google Scholar 

  • Zang LY, Cosma G, Gardner H, Vallyathan V (1998) Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta 1425:469–477

    Google Scholar 

  • Zatta P, Tognon G, Carampin P (2003) Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)]. J Pineal Res 35:98–103

    Google Scholar 

  • Zeng B, Zhang P, Zheng M, Xiao N, Han J, Wang C, Wang Z, Zhao Z (2019) Detection and identification of the oxidizing species generated from the physiologically important Fenton-like reaction of iron(II)-citrate with hydrogen peroxide. Arch Biochem Biophys 668:39–45

    Google Scholar 

  • Zhang H, Squadrito GL, Uppu R, Pryor WA (1999a) Reaction of peroxynitrite with melatonin: A mechanistic study. Chem Res Toxicol 12:526–534

    Google Scholar 

  • Zhang Z, Araghi-Niknam M, Liang B, Inserra P, Ardestani SK, Jiang S, Chow S, Watson RR (1999b) Prevention of immune dysfunction and vitamin E loss by dehydroepiandrosterone and melatonin supplementation during murine retrovirus infection. Immunology 96:291–297

    Google Scholar 

  • Zhang Y, Cook A, Kim J, Baranov SV, Jiang J, Smith K, Cormier K, Bennett E, Browser RP, Day AL, Carlisle DL, Ferrante RJ, Wang X, Friedlander RM (2013) Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 55:26–35

    Google Scholar 

  • Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L (2017) Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels. J Mol Endocrinol 59:219–233

    Google Scholar 

  • Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol (lausanne) 10:249

    Google Scholar 

  • Zhdanova IV, Wurtman RJ, Morabito C, Piotrovska VR, Lynch HJ (1996) Effects of low oral doses of melatonin, given 2–4 hours before habitual bedtime, on sleep in normal young humans. Sleep 19:423–431

    Google Scholar 

  • Zhdanova IV, Wurtman RJ, Regan MM, Taylor JA, Shi JP, Leclair OU (2001) Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 86:4727–4730

    Google Scholar 

  • Zisapel N (2007) Sleep and sleep disturbances: biological basis and clinical implications. Cell Mol Life Sci 64:1174–1186

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Challenge Grant from the University of Arizona Office of Research and Discovery (HKD, MAG, FXF). FXF also acknowledges funding from the Velux Stiftung (Proj. No. 1360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian-Xosé Fernandez .

Editor information

Editors and Affiliations

Ethics declarations

This article does not contain any studies with animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dollish, H.K., Kennedy, K.E.R., Grandner, M.A., Fernandez, FX. (2023). Melatonin, Circadian Rhythms, and Sleep: An Opportunity to Understand Mechanisms for Protecting Against Neurodegenerative Disease in Drosophila. In: Jagota, A. (eds) Sleep and Clocks in Aging and Longevity. Healthy Ageing and Longevity, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-031-22468-3_25

Download citation

Publish with us

Policies and ethics