Skip to main content

Ultrasound Tomography

  • Chapter
  • First Online:
Quantitative Ultrasound in Soft Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1403))

Abstract

Ultrasound tomography (USCT) is a promising imaging modality, mainly aiming at early diagnosis of breast cancer. It provides three-dimensional, reproducible images of higher quality than conventional ultrasound methods and additionally offers quantitative information on tissue properties. This chapter provides an introduction to the background and history of USCT, followed by an overview of image reconstruction algorithms and system design. It concludes with a discussion of current and future applications as well as limitations and their potential solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 139.00
Price excludes VAT (USA)
Hardcover Book
USD 179.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Althaus L (2015) On acoustic tomography using paraxial approximations. Master thesis, Universität Darmstadt

    Google Scholar 

  • Andersen AH (1990) A ray tracing approach to restoration and resolution enhancement in experimental ultrasound tomography. Ultrason Imaging 12(4):268–291

    Article  CAS  PubMed  Google Scholar 

  • André MP, Janee HS, Martin PJ, Otto GP, Spivey BA, Palmer DA (1997) High-speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays. Int J Imaging Syst Technol 8(1):137–147

    Article  Google Scholar 

  • André MP, Barker CH, Sekhon N, Wiskin J, Borup D, Callahan K (2009) Pre-clinical experience with full-wave inverse-scattering for breast imaging. In: Akiyama I (ed) Acoustical imaging, volume 29 of acoustical imaging. Springer, Netherlands, pp 73–80

    Google Scholar 

  • André M, Wiskin J, Borup D, Johnson S, Ojeda-Fournier H, Olson L (2012) Quantitative volumetric breast imaging with 3D inverse scatter computed tomography. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, pp 1110–1113

    Google Scholar 

  • André M, Wiskin J, Borup D (2013) Clinical results with ultrasound computed tomography of the breast. Quantitative ultrasound in soft tissues. Springer, Berlin, pp 395-432

    Google Scholar 

  • Calderon C, Vilkomerson D, Mezrich R, Etzold KF, Kingsley B, Haskin M (1976) Differences in the attenuation of ultrasound by normal, benign, and malignant breast tissue. J Clin Ultrasound 4:249–254

    Article  CAS  PubMed  Google Scholar 

  • Camacho J, Medina L, Cruza J, Moreno J, Fritsch C (2012) Multimodal ultrasonic imaging for breast cancer detection. Arch Acoust 37(3):253–260. https://acoustics.ippt.pan.pl/index.php/aa/article/view/89

    Article  Google Scholar 

  • Carson PL, Oughton TV, Hendee WR, Ahuja S (1977) Imaging soft tissue through bone with ultrasound transmission tomography by reconstruction. Med Phys 4(4):302–309

    Article  CAS  PubMed  Google Scholar 

  • Carson PL, Meyer CR, Scherzinger AL, Oughton TV (1981) Breast imaging in coronal planes with simultaneous pulse echo and transmission ultrasound. Science (New York, NY) 214(4525):1141–1143

    Article  CAS  Google Scholar 

  • Case collection study to determine the accuracy, call back and cancer detection rates of qt ultrasound in breast imaging (accrue) (2021). https://www.clinicaltrials.gov/ct2/show/NCT03052166. Accessed: 2021-11-08

  • Chen T, Shin J, Huang L (2016) Ultrasound transmission attenuation tomography using energy-scaled amplitude ratios. In: Duric N, Heyde B (eds) Medical imaging 2016: ultrasonic imaging and tomography, vol 9790. International Society for optics and Photonics, SPIE, Bellingham, pp 324–330

    Google Scholar 

  • Chen Q, Song H, Yu J, Kim K (2021) Current development and applications of super-resolution ultrasound imaging. Sensors (Basel, Switzerland) 21(7):2417

    Google Scholar 

  • Chenevert TL, Bylski DI, Carson PL, Meyer CR, Bland PH, Adler DD, Schmitt RM (1984) Ultrasonic computed tomography of the breast. Improvement of image quality by use of cross-correlation time-of-flight and phase-insensitive attenuation measurements. Radiology 152(1):155–159

    Article  CAS  PubMed  Google Scholar 

  • Cueto C, Guasch L, Cudeiro J, Agudo OC, Bates O, Strong G, Tang M-X (2021) Spatial response identification enables robust experimental ultrasound computed tomography. IEEE Trans Ultrason Ferroelectr Freq Control 69(1):27–37

    Article  PubMed  Google Scholar 

  • D’Astous FT, Foster FS (1986) Frequency dependence of ultrasound attenuation and backscatter in breast tissue. Ultrasound Med Biol 12(10):795–808

    Article  PubMed  Google Scholar 

  • Dapp R (2013) Abbildungsmethoden für die Brust mit einem 3D-Ultraschall-Computertomographen. Dissertation, Karlsruher Institut f”ur Technologie

    Google Scholar 

  • Dapp R, Zapf M, Ruiter NV (2011) Geometry-independent speed of sound reconstruction for 3D USCT using apriori information. In: 2011 IEEE international ultrasonics symposium, pp 1403–1406

    Google Scholar 

  • Dapp R, Gemmeke H, Ruiter NV (2012) 3D refraction-corrected transmission reconstruction for 3D Ultrasound Computer Tomography. In: Bosch JG, Doyley MM (eds) SPIE medical imaging 2012: ultrasonic imaging, tomography, and therapy, pp 832014–832014–7

    Google Scholar 

  • Delphinus Medical Technologies Inc (2021) Delphinus receives FDA approval for its SoftVue 3D whole breast ultrasound tomography system. https://www.delphinusmt.com/news/delphinus-receives-fda-approval-for-its-softvue-3d-whole-breast-ultrasound-tomography-system/. Accessed: 2021-11-08

  • Ding M, Song J, Zhou L, Wang S, Yuchi M (2018) In vitro and in vivo evaluations of breast ultrasound tomography imaging system in HUST. In: Duric N, Byram BC (eds) Medical imaging 2018: ultrasonic imaging and tomography, vol 10580. International Society for Optics and Photonics, SPIE, Bellingham, pp 162–169

    Google Scholar 

  • Doctor SR, Hall TE, Reid LD (1986) SAFT—the evolution of a signal processing technology for ultrasonic testing. NDT Int 19(3):163–167

    Article  Google Scholar 

  • Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH (2008) High-intensity focused ultrasound: Current potential and oncologic applications. AJR Am J Roentgenol 190(1):191–199

    Article  PubMed  Google Scholar 

  • Duric N, Littrup P, Li C, Rama O, Bey-Knight L, Schmidt S, Lupinacci J (2009) Detection and characterization of breast masses with ultrasound tomography: clinical results. In: McAleavey SA, D’hooge J (eds) SPIE proceedings vol. 7265: medical imaging 2009: ultrasonic imaging and signal processing, vol 7265. p 72651G

    Google Scholar 

  • Duric N, Littrup P, Chandiwala-Mody P, Li C, Schmidt S, Myc L, Rama O, Bey-Knight L, Lupinacci J, Ranger B, Szczepanski A, West E (2010) In-vivo imaging results with ultrasound tomography: report on an ongoing study at the Karmanos cancer institute. In: SPIE proceedings vol. 7629: medical imaging 2010: ultrasonic imaging, tomography, and therapy, p 76290M

    Google Scholar 

  • Duric N, Li C, Roy O, Schmidt S (2011) Acoustic tomography: promise versus reality. In: IEEE international ultrasonics symposium, IUS, pp 2033–2041

    Google Scholar 

  • Duric N, Littrup P, Schmidt S, Li C, Roy O, Bey-Knight L, Janer R, Kunz D, Chen X, Goll J, Wallen A, Zafar F, Allada V, West E, Jovanovic I, Li K, Greenway W (2013) Breast imaging with the SoftVue imaging system: First results. In: SPIE proceedings vol. 8675: medical imaging 2013: ultrasonic imaging, tomography, and therapy, vol 8675. p 86750K

    Google Scholar 

  • Duric N, Littrup P, Li C, Roy O, Schmidt S, Cheng X, Seamans J, Wallen A, Bey-Knight L (2014) Breast imaging with SoftVue: initial clinical evaluation. In: Bosch JG, Doyley MM (eds) Medical imaging 2014: ultrasonic imaging and tomography, vol 9040. International Society for Optics and Photonics, SPIE, pp 208–215

    Google Scholar 

  • Duric N, Littrup P, Sak M, Li C, Chen D, Roy O, Bey-Knight L, Brem R (2020) A novel marker, based on ultrasound tomography, for monitoring early response to neoadjuvant chemotherapy. J Breast Imaging 2(6):569–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Dussik KT (1942) Über die Möglichkeit hochfrequente mechanische Schwingungen als diagnostisches Hilfsmittel zu verwerten. Z Neurol Psychiat 174(183):153-168

    Article  Google Scholar 

  • Edmonds PD, Mortensen CL, Hill JR, Holland SK, Jensen JF, Schattner P, Valdes AD (1991) Ultrasound tissue characterization of breast biopsy specimens. Ultrason Imaging 13(2):162–185

    Article  CAS  PubMed  Google Scholar 

  • Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527(7579):499–502

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Hynynen K (1996) Ultrasound surgery using multiple sonications–treatment time considerations. Ultrasound Med Biol 22(4):471–482

    Article  CAS  PubMed  Google Scholar 

  • Fischer T, Bick U, Thomas A (2007) Mammographie-Screening in Deutschland. Vis J 15:62–67

    Google Scholar 

  • Günter A (2002) Quantitative Analyse und objektive Darstellung von Ultraschallbildern zur medizinischen Diagnose. Dissertation, Universität Karlsruhe

    Google Scholar 

  • Gemmeke H, Berger L, Hopp T, Zapf M, Tan W, Blanco R, Leys R, Peric I, Ruiter NV (2018) The new generation of the kit 3D USCT. In: Proceedings of the international workshop on medical ultrasound tomography: 1.- 3. Nov. 2017, Speyer, Germany. Hrsg.: T. Hopp. KIT Scientific Publishing, pp 271–282. 54.02.02; LK 01

    Google Scholar 

  • Glover GH (1977) Characterization of in vivo breast tissue by ultrasonic time of flight computed tomography. In: Proceeding of the national bureau of standards 2nd international symposium on ultrasonic tissue characterization, p 221

    Google Scholar 

  • Goncharsky AV, Romanov SY (2013) Supercomputer technologies in inverse problems of ultrasound tomography. Inverse Prob 29:075004

    Article  Google Scholar 

  • Greenleaf JF (1977) Quantitative cross-sectional imaging of ultrasound parameters. In: Ultrasonics symposium proceedings, pp 989–995

    Google Scholar 

  • Greenleaf JF (1986) A graphical description of scattering. Ultrasound Med Biol 12(8):603–609

    Article  CAS  PubMed  Google Scholar 

  • Greenleaf J, Bahn RC (1981) Clinical imaging with transmissive ultrasonic computerized tomography. IEEE Trans Biomed Eng 28(2):177–185

    Article  CAS  PubMed  Google Scholar 

  • Greenleaf JF, Johnson SA, Lee SL, Herman GT, Wood EH (1974) Algebraic reconstruction of spatial distributions of acoustic absorption within tissue from their two-dimensional acoustic projections. In: Acoustic holography, vol 5. Springer, New York, pp 591–603

    Chapter  Google Scholar 

  • Greenleaf JF, Ylitalo J Gisvold JJ (1987) Ultrasonic computed tomography for breast examination. IEEE engineering in medicine and biology magazine: the quarterly magazine of the engineering in medicine & biology society 6(4):27–32

    Article  CAS  Google Scholar 

  • Guasch L, Agudo OC, Tang M-X, Nachev P, Warner M (2020) Full-waveform inversion imaging of the human brain. NPJ Digital Med 3(1):28

    Article  Google Scholar 

  • Hardt M (2012) Distributed simulations for 3D ultrasound computer tomography. Acoustic wave simulations for a new breast cancer imaging device. Ph.d. thesis, University of Karlsruhe

    Google Scholar 

  • Hesse MC, Salehi L, Schmitz G (2013) Nonlinear simultaneous reconstruction of inhomogeneous compressibility and mass density distributions in unidirectional pulse-echo ultrasound imaging. Phys Med Biol 58(17):6163–6178

    Article  PubMed  Google Scholar 

  • Holmes JH, Howry DH, Posakony GJ, Cushman CR (1955) The ultrasonic visualization of soft tissue structures in the human body. Trans Am Clin Climatol Assoc 66(C):208–225

    PubMed Central  Google Scholar 

  • Hopp T (2012) Multimodal registration of x-ray mammography with 3D volume datasets. Ph.d. thesis, University Mannheim

    Google Scholar 

  • Hopp T, Ruiter NV (2021) Strain elastography with ultrasound computer tomography: a simulation study based on biomechanical models. In: Byram BC, Ruiter NV (eds) Medical imaging 2021: ultrasonic imaging and tomography, vol 11602. International Society for Optics and Photonics, SPIE, Bellingham, pp 194–201

    Google Scholar 

  • Hopp T, Duric N, Ruiter NV (2015) Image fusion of ultrasound computer tomography volumes with x-ray mammograms using a biomechanical model based 2D/3D registration. Comput Med Imaging Graph 40:170–181

    Article  CAS  PubMed  Google Scholar 

  • Howry DH, Bliss WR (1952) Ultrasonic visualization of soft tissue structures of the body. J Lab Clin Med 40:579–592

    CAS  PubMed  Google Scholar 

  • Hung S-H, Dahlen FA, Nolet G (2000) Frechet kernels for finite-frequency traveltimes-II. Examples. Geophys J Int 141:175–203

    Article  Google Scholar 

  • Jensen J, Nikolov SI, Yu A, Garcia D (2016) Ultrasound vector flow imaging: Ii: parallel systems. IEEE Trans Ultrason Ferroelectr Freq Control 63:1–1

    Article  Google Scholar 

  • Johnson SA, Abbott T, Bell R, Berggren M, Borup D, Robinson D, Wiskin J, Olsen S, Hanover B (2007) Non-invasive breast tissue characterization using ultrasound speed and attenuation. In: Acoustical imaging. Springer, Netherlands, pp 147–154

    Chapter  Google Scholar 

  • Keller JB (1969) Accuracy and validity of the Born and Rytov approximations. J Opt Soc Am 59(8):1003–1004

    Article  Google Scholar 

  • Kelly KM, Richwald GA (2011) Automated whole-breast ultrasound: advancing the performance of breast cancer screening. Semin Ultrasound CT MR 32(4):273–280

    Article  PubMed  Google Scholar 

  • Klepper JR, Brandenburger GH, Busse LJ, Miller JG (1977) Phase cancellation, reflection, and refraction effects in quantitative ultrasonic attenuation tomography. In: 1977 ultrasonics symposium, pp 182–188

    Google Scholar 

  • Kretzek E, Ruiter NV (2014) GPU based 3D SAFT reconstruction including phase aberration. In: Bosch JG, Doyley MM (eds) Proceeding SPIE 9040, medical imaging 2014: ultrasonic imaging and tomography, p 90400W

    Google Scholar 

  • Kretzek E, Zapf M, Birk M, Gemmeke H, Ruiter NV (2013) GPU based acceleration of 3D USCT image reconstruction with efficient integration into MATLAB. In: Bosch JG, Doyley MM (eds) Proceedings of SPIE 8675, medical imaging 2013: ultrasonic imaging, tomography, and therapy, p 86750O

    Google Scholar 

  • Kretzek E, Hucker P, Zapf M, Ruiter NV (2015) Evaluation of directional reflectivity characteristics as new modality for 3D Ultrasound Computer Tomography. In: 2015 IEEE international ultrasonics symposium (IUS)

    Google Scholar 

  • Lasaygues P, Rouyer J, Mensah S, Franceschini E, Rabau G, Guillermin R, Bernard S, Monteiller V, Komatitsch D (2018) Non-linear ultrasonic computed tomography (USCT) for soft and hard tissue imaging. In: Proceedings of the international workshop on medical ultrasound tomography, pp 77-88

    Google Scholar 

  • Lavarello RJ, Oelze ML (2009) Tomographic reconstruction of three-dimensional volumes using the distorted Born iterative method. IEEE Trans Med Imaging 28(10):1643–1653

    Article  PubMed  Google Scholar 

  • Li C, Duric N, Huang L (2008) Breast imaging using transmission ultrasound: reconstructing tissue parameters of sound speed and attenuation. In: BioMedical engineering and informatics: new development and the future - proceedings of the 1st international conference on bioMedical engineering and informatics, BMEI 2008, vol 2. pp 708–712

    Google Scholar 

  • Li C, Duric N, Littrup P, Huang L (2009) In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med Biol 35(10):1615–1628

    Article  PubMed  PubMed Central  Google Scholar 

  • Linzer M, Norton, SJ (1982) Ultrasonic tissue characterization. Annu Rev Biophys Bioeng 11(4):303–329

    Article  CAS  PubMed  Google Scholar 

  • Malik B, Terry R, Wiskin J, Lenox M (2018) Quantitative transmission ultrasound tomography: imaging and performance characteristics. Med Phys 45(7):3063–3075

    Article  PubMed  Google Scholar 

  • Malik B, Iuanow E, Klock J (2020) An exploratory multi-reader, multi-case study comparing transmission ultrasound to mammography on recall rates and detection rates for breast cancer lesions. Acad Radiol 29:S10–S18

    Article  PubMed  Google Scholar 

  • Malik B, Lee S, Natesan R, Wiskin J (2020) Clustering based quantitative breast density assessment using 3D transmission ultrasound. In: Byram BC, Ruiter NV (eds) Medical imaging 2020: ultrasonic imaging and tomography, vol 11319. International Society for Optics and Photonics, SPIE, Bellingham, pp 91–96

    Google Scholar 

  • Manohar S, Dantuma M (2019) Current and future trends in photoacoustic breast imaging. Photoacoustics 16:100134

    Article  PubMed  PubMed Central  Google Scholar 

  • Marmarelis VZ, Jeong J, Shin DC, Do S (2007) High-resolution 3-D imaging and tissue differentiation with transmission tomography. In: André MP et al (eds) Acoustical imaging, volume 28 of acoustical imaging. Springer, Netherlands, pp 195–206

    Google Scholar 

  • Medina-Valdés L, Pérez-Liva M, Camacho J, Udías JM, Herraiz JL, González-Salido N (2015) Multi-modal ultrasound imaging for breast cancer detection. Phys Procedia 63:134–140. 43rd Annual UIA Symposium 23–25 April 2014 CSIC Madrid, Spain

    Google Scholar 

  • Misaridis T, Jensen JA (2005) Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits. IEEE Trans Ultrason Ferroelectr Freq Control 52(2):177–191

    Article  PubMed  Google Scholar 

  • Misaridis T, Munk P (2004) High frame rate imaging using parallel transmission of focused coded fields [medical ultrasound imaging applications]. In: IEEE ultrasonics symposium 2004, vol 2. pp 1417–1420

    Google Scholar 

  • Mortensen CL, Edmonds PD, Gorfu Y, Hill JR, Jensen JF, Schattner P, Shifrin LA, Valdes AD, Jeffrey SS, Esserman LJ (1996) Ultrasound tissue characterization of breast biopsy specimens: expanded study. Ultrason Imaging 18(3):215–230

    Article  CAS  PubMed  Google Scholar 

  • Mueller RK, Kaveh M, Wade G (1979) Reconstructive tomography and applications to ultrasonics. Proc IEEE 67(4):567–587

    Article  Google Scholar 

  • Natterer F (2001) The mathematics of computerized tomography. Society for industrial and applied mathematics, Philadelphia

    Book  Google Scholar 

  • Natterer F (2008) Acoustic mammography in the time domain. Technical report, University Muenster

    Google Scholar 

  • Nikolov S, Jensen JA (2002) Virtual ultrasound sources in high-resolution ultrasound imaging. In: Insana MF, Walker WF (eds) Medical imaging 2002: ultrasonic imaging and signal processing, vol 4687. International Society for Optics and Photonics, SPIE, Bellingham, pp 395–405

    Chapter  Google Scholar 

  • Norton SJ, Linzer M (1979) Ultrasonic reflectivity imaging in three dimensions: reconstruction with spherical transducer arrays. Ultrason Imaging 1:210–231

    Article  CAS  PubMed  Google Scholar 

  • Norton SJ, Linzer M (1979) Ultrasonic reflectivity tomography: reconstruction with circular transducer arrays. Ultrason Imaging 1(2):154–184

    Article  CAS  PubMed  Google Scholar 

  • Norton SJ, Linzer M (1981) Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomed Eng BME-28(2):202–220

    Article  Google Scholar 

  • O’Donnell M, Mimbs JW, Sobel BE, Miller JB (1977) Ultrasonic attenuation in normal and ischemic myocardium. In: Proceeding of the national bureau of standards 2nd international symposium on ultrasonic tissue characterization, p 63

    Google Scholar 

  • Özmen N, Dapp R, Zapf M, Gemmeke H, Ruiter NV, van Dongen KWA (2015) Comparing different ultrasound imaging methods for breast cancer detection. IEEE Trans Ultrason Ferroelectr Freq Control 62(4):637–646

    Article  PubMed  Google Scholar 

  • Pellegretti P, Vicari M, Zani M, Weigel M, Borup D, Wiskin J, Saueressig U, Kotter E, Langer M (2011) A clinical experience of a prototype automated breast ultrasound system combining transmission and reflection 3D imaging. In: IEEE international ultrasonics symposium, IUS, p 1407–1410

    Google Scholar 

  • Qian ZW, Xiong L, Yu J, Shao D, Zhu H, Wu X (2006) Noninvasive thermometer for HIFU and its scaling. Ultrasonics 44:e31–e35. Proceedings of Ultrasonics International (UI’05) and World Congress on Ultrasonics (WCU)

    Google Scholar 

  • Rouyer J, Mensah S, Franceschini E, Lasaygues P, Lefebvre J-P (2012) Conformal ultrasound imaging system for anatomical breast inspection. IEEE Trans Ultrason Ferroelectr Freq Control 59(7):1457–1469

    Article  PubMed  Google Scholar 

  • Roy O, Schmidt S, Li C, Allada V, West E, Kunz D, Duric N (2013) Breast imaging using ultrasound tomography: from clinical requirements to system design. In: 2013 IEEE international ultrasonics symposium (IUS), p 1174–1177

    Google Scholar 

  • Ruiter NV, Göbel G, Berger L, Zapf M, Gemmeke H (2011) Realization of an optimized 3D USCT. In: D’hooge J, Doyley MM (eds) Proceeding SPIE 7968, medical imaging 2011: ultrasonic imaging, tomography, and therapy, p 796805

    Google Scholar 

  • Ruiter NV, Zapf M, Dapp R, Hopp T, Kaiser WA, Gemmeke H (2013) First results of a clinical study with 3D ultrasound computer tomography. In: 2013 IEEE international ultrasonics symposium (IUS), pp 651–654

    Google Scholar 

  • Ruiter NV, Zapf M, Hopp T, Gemmeke H, van Dongen KWA, Camacho J, Fritsch C, Cruza JF, Herraiz JL, Perez Liva M, Udias JM (2018) The USCT reference database. In: Proceedings of the international workshop on medical ultrasound tomography: 1.- 3. Nov. 2017, Speyer, Germany. Hrsg.: T. Hopp. KIT Scientific Publishing, pp 385–394. 54.02.02; LK 01

    Google Scholar 

  • Sak M, Duric N, Pfeiffer R, Sherman M, Littrup P, Simon M, Gorski D, Albrecht T, Ali H, Brem R, Fan S, Gierach G (2020) Abstract p3-08-28: tissue sound speed is more strongly associated with breast cancer risk than mammographic percent density: a comparative case-control study. Cancer Res 80(4 Supplement):P3–08

    Google Scholar 

  • Salido N, Medina L, Camacho J (2016) Full angle spatial compound of ARFI images for breast cancer detection. Ultrasonics 71:161–171

    Article  Google Scholar 

  • Sandhu GY, Li C, Roy O, Schmidt S, Duric N (2015) Frequency domain ultrasound waveform tomography: breast imaging using a ring transducer. Phys Med Biol 60(14):5381–5398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schomberg H (1978) An improved approach to reconstructive ultrasound tomography. J Phys D Appl Phys 11(15):L181–L185

    Article  Google Scholar 

  • Schwarzenberg GF, Gemmeke H, Ruiter NV (2008) 3D PSF analysis for arbitrary transducer geometries and SAFT-based image reconstruction. In: McAleavey SA, D’hooge J (eds) SPIE proceedings vol. 6920: medical imaging 2008: ultrasonic imaging and signal processing, p 69200A

    Google Scholar 

  • Sehgal CM, Greenleaf JF (1984) Scattering of ultrasound by tissues. Ultrason Imaging 6(1):60–80

    Article  CAS  PubMed  Google Scholar 

  • Simonetti F, Huang L, Duric N (2009) A multiscale approach to diffraction tomography of complex three-dimensional objects. Appl Phys Lett 95:061904

    Article  Google Scholar 

  • Spetzler J, Snieder R (2004) The Fresnel volume and transmitted waves. Geophysics 69(3):653–663

    Article  Google Scholar 

  • Stotzka R, Widmann H, Müller TO, Schlote-Holubek K, Gemmeke H, Ruiter NV, Göbel G (2004) Prototype of a new 3D ultrasound computer tomography system: transducer design and data recording. In: Walker WF, Emelianov SY (eds) Proceeding SPIE. 5373, medical imaging 2004: ultrasonic imaging and signal processing, pp 70–79

    Google Scholar 

  • Suzuki A, Tsubota Y, Terada T, Yamashita H, Kato F, Nishida M, Satoh M, and Kawabata K (2021) Optimized source estimation for full waveform inversion in ultrasound computed tomography. In: Byram BC, Ruiter NV (eds) Medical imaging 2021: ultrasonic imaging and tomography, vol 11602. International Society for Optics and Photonics, SPIE, Bellingham, pp 32–39

    Google Scholar 

  • Szabo TL (2014) Diagnostic ultrasound imaging: inside out. Academic Press, New York

    Google Scholar 

  • Tae-Seong K (2005) 3-D high resolution ultrasonic transmission tomography and soft tissue differentiation. J Biomed Eng Res 26(1):55–63

    Google Scholar 

  • Tan WY, Steiner T, Ruiter NV (2015) Newton’s method based self calibration for a 3D Ultrasound Tomography System. In: 2015 IEEE international ultrasonics symposium (IUS), pp 1–4

    Google Scholar 

  • Tanter M, Fink M (2014) Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq control 61:102–119

    Article  PubMed  Google Scholar 

  • Taskin U (2021) Full-waveform inversion for breast ultrasound. PhD thesis, Delft University of Technology

    Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (1990) Introduction to Algorithms. MIT Press, Cambridge

    Google Scholar 

  • USCT Exchange and Collaboration Platform (2021) http://ipeusctdb1.ipe.kit.edu/~usct/challenge/. Accessed: 2021-04-21

  • van Dongen KWA, Wright WMD (2007) A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles. J Acoust Soc Am 121:1538–1549

    Article  PubMed  Google Scholar 

  • Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6):WCC1–WCC26

    Article  Google Scholar 

  • Wang H, Qian X, Gemmeke H, Hopp T, Ruiter NV, Hesser J (2020) Fast image reconstruction in ultrasound transmission tomography by U-net. In: 2020 virtual IEEE nuclear science symposium and medical imaging conference

    Google Scholar 

  • Webb S (1988) The physics of medical imaging. Hilger, Bristol Philadelphia

    Book  Google Scholar 

  • Williamson PR (1991) A guide to the limits of resolution imposed by scattering in ray tomography. Geophysics 56(2):202–207

    Article  Google Scholar 

  • Wiskin J, Borup D, Johnson S (2011) Inverse scattering theory. In André MP, Jones JP, Lee H (eds) Acoustical imaging, vol 30. Springer, Netherlands, pp 53–59

    Chapter  Google Scholar 

  • Wiskin J, Borup DT, Johnson SA, Berggren M (2012) Non-linear inverse scattering: high resolution quantitative breast tissue tomography. J Acoust Soc Am 131(5):3802–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiskin J, Borup D, Johnson S, André M, Greenleaf J, Parisky Y, Klock J (2013) Three-dimensional nonlinear inverse scattering: quantitative transmission algorithms, refraction corrected reflection, scanner design and clinical results. In: Proceedings of meetings on acoustics, vol 19

    Google Scholar 

  • Wiskin J, Malik B, Natesan R, Pirshafiey N, Klock J, Lenox M (2019) 3D full inverse scattering ultrasound tomography of the human knee (conference Presentation). In: Byram BC, Ruiter NV (eds) Medical imaging 2019: ultrasonic imaging and tomography, vol 10955. International Society for Optics and Photonics, SPIE, Bellingham

    Google Scholar 

  • Wiskin J, Malik B, Theendakara V, Klock J (2020) Orthopedic and myopathic imaging with transmission ultrasound tomography: experimental verification, quantitative accuracy and clinical implications. In: Byram BC, Ruiter NV (eds) Medical imaging 2020: ultrasonic imaging and tomography, vol 11319. International Society for Optics and Photonics, SPIE, Bellingham, pp 175–182

    Google Scholar 

  • Wiskin J, Malik B, Pirshafiey N, Klock J (2020) Limited view reconstructions with transmission ultrasound tomography: clinical implications and quantitative accuracy. In: Byram BC, Ruiter NV (eds) Medical imaging 2020: ultrasonic imaging and tomography, vol 11319. International Society for Optics and Photonics, SPIE, Bellingham, p 167–174

    Google Scholar 

  • Woo J (2015) A short history of the development of ultrasound in obstetrics and gynecology. http://www.ob-ultrasound.net/history1.html. Accessed: 2015-11-09.

  • Yamashita M (2021) Delphinus SoftVue prospective case collection - arm 1 (SV PCC ARM1). https://www.clinicaltrials.gov/ct2/show/record/NCT03257839. Accessed: 2021-11-08

  • Yu T, Fan X, Xiong S, Hu K, Wang Z (2006) Microbubbles assist goat liver ablation by high intensity focused ultrasound. Eur Radiol 16(7):1557–1563

    Article  PubMed  Google Scholar 

  • Zhang X, Broschat SL, Flynn PJ (2004) A numerical study of conjugate gradient directions for an ultrasound inverse problem. J Comput Acoust 12(4): 587–604

    Article  Google Scholar 

  • Zografos G, Liakou P, Koulocheri D, Liovarou I, Sofras M, Hadjiagapis S, Orme M, Marmarelis V (2015) Differentiation of BIRADS-4 small breast lesions via multimodal ultrasound tomography. Eur Radiol 25(2):410–418

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole V. Ruiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiter, N.V., Zapf, M., Hopp, T., Gemmeke, H. (2023). Ultrasound Tomography. In: Mamou, J., Oelze, M.L. (eds) Quantitative Ultrasound in Soft Tissues. Advances in Experimental Medicine and Biology, vol 1403. Springer, Cham. https://doi.org/10.1007/978-3-031-21987-0_9

Download citation

Publish with us

Policies and ethics