Skip to main content

Gene Therapy Strategies for Prophylactic and Therapeutic Treatments of Human Prion Diseases

  • Chapter
  • First Online:
Prions and Diseases
  • 906 Accesses

Abstract

Prion disease is a diverse family of fatal and usually transmissible and progressive neurodegenerative diseases that strike humans and many other mammal species, such as cattle, sheep, and cervids. The cellular PrP (PrPC) is the substrate for the replication of misfolded prion protein aggregates (PrPSc) that serve as the transmissible prion agents. PrPC is also essential for prion pathogenesis. No treatments are available for prion diseases. Numerous efforts with various anti-prion compounds or antibodies have not produced meaningful benefits for prion patients in clinical trials so far. The gene therapy technology has matured in the last several years and offers great hopes for effective treatment and prevention of prion diseases. Here, we review the current literature on prion gene therapy development and propose a few promising gene therapy strategies targeting various aspects of prion replication and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 189.00
Price excludes VAT (USA)
Softcover Book
USD 249.99
Price excludes VAT (USA)
Hardcover Book
USD 249.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelaziz DH, Abdulrahman BA, Gilch S, et al. Autophagy pathways in the treatment of prion diseases. Curr Opin Pharmacol. 2019;44:46–52.

    Article  CAS  Google Scholar 

  • Ahn M, Bajsarowicz K, Oehler A, et al. Convection-enhanced delivery of AAV2-PrPshRNA in prion-infected mice. PLoS One. 2014;9(5):e98496.

    Article  Google Scholar 

  • Altmeppen HC, Prox J, Puig B, et al. Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener. 2011;6:36.

    Article  CAS  Google Scholar 

  • Altmeppen HC, Prox J, Krasemann S, et al. The sheddase ADAM10 is a potent modulator of prion disease. elife. 2015;4:e04260.

    Article  Google Scholar 

  • Baiardi S, Rossi M, Capellari S, et al. Recent advances in the histo-molecular pathology of human prion disease. Brain Pathol. 2019;29(2):278–300.

    Article  Google Scholar 

  • Bender H, Noyes N, Annis JL, et al. PrPC knockdown by liposome-siRNA-peptide complexes (LSPCs) prolongs survival and normal behavior of prion-infected mice immunotolerant to treatment. PLoS One. 2019;14(7):e0219995.

    Article  CAS  Google Scholar 

  • Bishop MT, Will RG, Manson JC. Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties. Proc Natl Acad Sci U S A. 2010;107:12005–10.

    Article  CAS  Google Scholar 

  • Bradley SJ, Bourgognon JM, Sanger HE, et al. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. J Clin Invest. 2017;127(2):487–99.

    Article  Google Scholar 

  • Brandner S, Isenmann S, Raeber A, et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature. 1996;379:339–43.

    Article  CAS  Google Scholar 

  • Cali I, Castellani R, Yuan J, et al. Classification of sporadic Creutzfeldt-Jakob disease revisited. Brain. 2006;129:2266–77.

    Article  Google Scholar 

  • Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20(8):1172–9.

    Article  CAS  Google Scholar 

  • Chesebro B, Trifilo M, Race R, et al. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science. 2005;308:1435–9.

    Article  CAS  Google Scholar 

  • Cobb NJ, Sönnichsen FD, McHaourab H, et al. Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A. 2007;104(48):18946–51.

    Article  CAS  Google Scholar 

  • Crozet C, Lin YL, Mettling C. Inhibition of PrPSc formation by lentiviral gene transfer of PrP containing dominant negative mutations. J Cell Sci. 2004;117(Pt 23):5591–7.

    Article  CAS  Google Scholar 

  • Daude N, Marella M, Chabry J. Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J Cell Sci. 2003;116:2775–9.

    Article  CAS  Google Scholar 

  • Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204–9.

    Article  CAS  Google Scholar 

  • Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part I. A literature review. Expert Rev Neurother. 2021a;21(9):969–82.

    Article  CAS  Google Scholar 

  • Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part II. Strategies for therapeutics development. Expert Rev Neurother. 2021b;21(9):983–91.

    Article  CAS  Google Scholar 

  • Ding M, Teruya K, Zhang W, et al. Decrease in skin prion-seeding activity of prion-infected mice treated with a compound against human and animal prions: a first possible biomarker for prion therapeutics. Mol Neurobiol. 2021;58(9):4280–92.

    Article  CAS  Google Scholar 

  • Endres K, Mitteregger G, Kojro E, et al. Influence of ADAM10 on prion protein processing and scrapie infectiosity in vivo. Neurobiol Dis. 2009;36(2):233–41.

    Article  CAS  Google Scholar 

  • Forloni G, Tettamanti M, Lucca U, et al. Preventive study in subjects at risk of fatal familial insomnia: innovative approach to rare diseases. Prion. 2015;9(2):75–9.

    Article  CAS  Google Scholar 

  • Forloni G, Roiter I, Tagliavini F. Clinical trials of prion disease therapeutics. Curr Opin Pharmacol. 2019;44:53–60.

    Article  CAS  Google Scholar 

  • Fujita K, Yamaguchi Y, Mori T. Effects of a brain-engraftable microglial cell line expressing anti-prion scFv antibodies on survival times of mice infected with scrapie prions. Cell Mol Neurobiol. 2011;31(7):999–1008.

    Article  CAS  Google Scholar 

  • Gambetti P, Dong Z, Yuan J. A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol. 2008;63:697–708.

    Article  CAS  Google Scholar 

  • Gambetti P, Cali I, Notari S, et al. Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol. 2011;121:79–90.

    Article  CAS  Google Scholar 

  • Genoud N, Ott D, Braun N, Prinz M, et al. Antiprion prophylaxis by gene transfer of a soluble prion antagonist. Am J Pathol. 2008;172:1287–96.

    Article  CAS  Google Scholar 

  • Giles K, Olson SH, Prusiner SB. Developing therapeutics for PrP prion diseases. Cold Spring Harb Perspect Med. 2017;7(4):a023747.

    Article  Google Scholar 

  • Glynn C, Sawaya MR, Ge P, et al. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol. 2020;27(5):417–23.

    Article  CAS  Google Scholar 

  • Hannaoui S, Arifin MI, Chang SC, et al. Cellulose ether treatment in vivo generates chronic wasting disease prions with reduced protease resistance and delayed disease progression. J Neurochem. 2020;152(6):727–40.

    Article  CAS  Google Scholar 

  • Ironside JW. Variant Creutzfeldt-Jakob disease: an update. Folia Neuropathol. 2012;50(1):50–6.

    CAS  Google Scholar 

  • Kong Q. RNAi: a novel strategy for the treatment of prion diseases. J Clin Invest. 2006;116(12):3101–3.

    Article  CAS  Google Scholar 

  • Kong Q, Surewicz WK, Petersen RB, et al. Inherited prion diseases (Chapter 14). In: Prusiner S, editor. Prion biology and diseases. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 2004. p. 673–776.

    Google Scholar 

  • Kraus A, Hoyt F, Schwartz CL, et al. High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell. 2021;81(21):4540–4551.e6.

    Article  CAS  Google Scholar 

  • Liang J, Kong Q. α-cleavage of cellular prion protein. Prion. 2012;6(5):453–60.

    Article  CAS  Google Scholar 

  • Liang J, Wang W, Sorensen D. Cellular prion protein regulates its own α-cleavage through ADAM8 in skeletal muscle. J Biol Chem. 2012;287(20):16510–20.

    Article  CAS  Google Scholar 

  • Linsenmeier L, Mohammadi B, Shafiq M, et al. Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. Sci Adv. 2021;7(48):eabj1826.

    Article  CAS  Google Scholar 

  • Mallucci G, Dickinson A, Linehan J, et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science. 2003;302(5646):871–4.

    Article  CAS  Google Scholar 

  • McDonald AJ, Dibble JP, Evans EG, et al. A new paradigm for enzymatic control of α-cleavage and β-cleavage of the prion protein. J Biol Chem. 2014;289:803–13.

    Article  CAS  Google Scholar 

  • Mead S, Khalili-Shirazi A, Potter C, et al. Prion protein monoclonal antibody (PRN100) therapy for Creutzfeldt-Jakob disease: evaluation of a first-in-human treatment programme. Lancet Neurol. 2022;21(4):342–54.

    Article  CAS  Google Scholar 

  • Minikel EV, Zhao HT, Le J, et al. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res. 2020;48(19):10615–31.

    Article  CAS  Google Scholar 

  • Moda F, Vimercati C, Campagnani I, et al. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice. Prion. 2012;6(4):383–90.

    Article  CAS  Google Scholar 

  • Mohammadi B, Linsenmeier L, Shafiq M, et al. Transgenic overexpression of the disordered prion protein N1 fragment in mice does not protect against neurodegenerative diseases due to impaired ER translocation. Mol Neurobiol. 2020;57(6):2812–29.

    Article  CAS  Google Scholar 

  • Nazor Friberg K, Hung G, Wancewicz E, et al. Intracerebral infusion of antisense oligonucleotides into prion-infected mice. Mol Ther Nucleic Acids. 2012;1(2):e9.

    Article  Google Scholar 

  • Parchi P, Giese A, Capellari S, et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol. 1999;46:224–33.

    Article  CAS  Google Scholar 

  • Pereira TC, Lopes-Cendes I. Emerging RNA-based drugs: siRNAs, microRNAs and derivates. Cent Nerv Syst Agents Med Chem. 2012;12(3):217–32.

    Article  CAS  Google Scholar 

  • Pfeifer A, Eigenbrod S, Al-Khadra S, et al. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest. 2006;116(12):3204–10.

    Article  CAS  Google Scholar 

  • Postina R, Schroeder A, Dewachter I, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest. 2004;113:1456–64.

    Article  CAS  Google Scholar 

  • Prinzen C, Trümbach D, Wurst W, et al. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice. BMC Genomics. 2009;10:66.

    Article  Google Scholar 

  • Puig B, Altmeppen HC, Linsenmeier L, et al. GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice. PLoS Pathog. 2019;15(1):e1007520.

    Article  Google Scholar 

  • Raymond GJ, Zhao HT, Race B, et al. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight. 2019;5(16):e131175.

    Article  Google Scholar 

  • Richt JA, Kasinathan P, Hamir AN. Production of cattle lacking prion protein. Nat Biotechnol. 2007;25(1):132–8.

    Article  CAS  Google Scholar 

  • Sailer A, Büeler H, Fischer M, et al. No propagation of prions in mice devoid of PrP. Cell. 1994;77(7):967–8.

    Article  CAS  Google Scholar 

  • Sayed N, Allawadhi P, Khurana A, et al. Gene therapy: comprehensive overview and therapeutic applications. Life Sci. 2022;294:120375.

    Article  CAS  Google Scholar 

  • Serpa JJ, Popov KI, Petrotchenko EV, et al. Structure of prion β-oligomers as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. Proteomics. 2021;21(21–22):e2000298.

    Article  Google Scholar 

  • Spagnolli G, Rigoli M, Novi Inverardi G, et al. Modeling PrPSc generation through deformed templating. Front Bioeng Biotechnol. 2020;8:590501.

    Article  Google Scholar 

  • Stobart MJ, Simon SL, Plews M, et al. Efficient knockdown of human prnp mRNA expression levels using hybrid hammerhead ribozymes. J Toxicol Environ Health A. 2009;72(17–18):1034–9.

    Article  CAS  Google Scholar 

  • Teruya K, Doh-Ura K. Therapeutic development of polymers for prion disease. Cell Tissue Res. 2022; https://doi.org/10.1007/s00441-022-03604-1. Epub ahead of print

  • Teruya K, Oguma A, Nishizawa K, et al. A single subcutaneous injection of cellulose ethers administered long before infection confers sustained protection against prion diseases in rodents. PLoS Pathog. 2016;12(12):e1006045.

    Article  Google Scholar 

  • Toupet K, Compan V, Crozet C, et al. Effective gene therapy in a mouse model of prion diseases. PLoS One. 2008;3(7):e2773.

    Article  Google Scholar 

  • Tremblay P, Meiner Z, Galou M, et al. Doxycycline control of prion protein transgene expression modulates prion disease in mice. Proc Natl Acad Sci U S A. 1998;95(21):12580–5.

    Article  CAS  Google Scholar 

  • Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78.

    Article  CAS  Google Scholar 

  • Wang LQ, Zhao K, Yuan HY, et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat Struct Mol Biol. 2020;27(6):598–602.

    Article  Google Scholar 

  • Wang LQ, Zhao K, Yuan HY, et al. Genetic prion disease-related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM. Sci Adv. 2021;7(37):eabg9676.

    Article  CAS  Google Scholar 

  • Weissmann C, Flechsig E. PrP knock-out and PrP transgenic mice in prion research. Br Med Bull. 2003;66:43–60.

    Article  CAS  Google Scholar 

  • White AR, Enever P, Tayebi M, et al. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature. 2003;422(6927):80–3.

    Article  CAS  Google Scholar 

  • White MD, Farmer M, Mirabile I, et al. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci U S A. 2008;105(29):10238–43.

    Article  CAS  Google Scholar 

  • Wuertzer CA, Sullivan MA, Qiu X, et al. CNS delivery of vectored prion-specific single-chain antibodies delays disease onset. Mol Ther. 2008;16(3):481–6.

    Article  CAS  Google Scholar 

  • Zattoni M, Legname G. Tackling prion diseases: a review of the patent landscape. Expert Opin Ther Pat. 2021;31(12):1097–115.

    Article  CAS  Google Scholar 

  • Zou W, Puoti G, Xiao X, et al. Variably protease-sensitive prionopathy: a new sporadic disease of the prion protein. Ann Neurol. 2010;68:162–72.

    Article  CAS  Google Scholar 

  • Zuber C, Mitteregger G, Schuhmann N, et al. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J Gen Virol. 2008;89:2055–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camacho, M., Kong, Q. (2023). Gene Therapy Strategies for Prophylactic and Therapeutic Treatments of Human Prion Diseases. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-20565-1_36

Download citation

Publish with us

Policies and ethics