Skip to main content

Therapeutic and Toxic Concentrations of Drugs in Biological Matrices

  • Chapter
  • First Online:
Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology

Abstract

Therapeutic drug monitoring (TDM) describes the measurement of chemical parameters of drugs during clinical laboratory testing. TDM aids estimation of the efficacy and safety of drugs, often a determinant of future dosing pattern. It combines knowledge of pharmaceutics, pharmacokinetics, and pharmacodynamics of drugs. TDM typically involves measuring of drug concentration in various biological fluids (matrices). Drug levels can be assayed in blood, urine, hair, tears, etc. The concentration of drugs measured in these matrices helps to estimate whether a drug is within its therapeutic range. Usually, when drug levels in these matrices attain toxic concentrations, it will lead to potential adverse effects, thus the need for documented data on therapeutic and toxic concentrations of drugs in the various biological matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 219.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amponsah SK, Boadu JA, Dwamena DK, Opuni KFM. Bioanalysis of aminoglycosides using high-performance liquid chromatography. ADMET DMPK. 2022;10(1):27–62.

    PubMed  PubMed Central  Google Scholar 

  2. Reid E, Wilson ID, editors. Drug determination in therapeutic and forensic contexts. Elsevier B.V; 1986. p. 495.

    Google Scholar 

  3. Peng GW, Chiou WL. Analysis of drugs and other toxic substances in biological samples for pharmacokinetic studies. J Chromatogr B Biomed Sci Appl. 1990;531:3–50.

    Article  CAS  Google Scholar 

  4. Wong SHY, et al. Microbore liquid chromatography for therapeutic drug monitoring and toxicology: clinical analyses of theophylline, caffeine, procainamide, and N-acetyl procainamide. J Liq Chromatogr. 1987;10(2–3):491–506.

    Article  CAS  Google Scholar 

  5. Eliasson E, et al. Therapeutic drug monitoring for tomorrow. Eur J Clin Pharmacol. 2013;69(Suppl 1):25–32.

    Article  PubMed  Google Scholar 

  6. Amponsah SK, et al. A pharmacokinetic evaluation of a pectin based oral multiparticulate matrix carrier of carbamazepine. Adv Pharm Pharm Sci. 2021;5527452:7.

    Google Scholar 

  7. Opuni KFM, Boadu JA, Amponsah SK, Okai CA. High performance liquid chromatography: a versatile tool for assaying antiepileptic drugs in biological matrices. J Chromatogr B. 2021;1179:122750.

    Article  CAS  Google Scholar 

  8. Gross AS. Best practice in therapeutic drug monitoring. Br J Clin Pharmacol. 2001;52(S1):5–9.

    Article  Google Scholar 

  9. Hadland SE, Levy S. Objective testing: urine and other drug tests. Child Adolesc Psychiatr Clin N Am. 2016;25(3):549–65.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dankyi BO, et al. Chitosan coated hydroxypropylmethyl cellulose microparticles of levodopa (and carbidopa): in vitro and rat model kinetic characteristics. Curr Ther Res. 2020;93:100612.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moeller MR, Steinmeyer S, Kraemer T. Determination of drugs of abuse in blood. J Chromatogr B Biomed Sci Appl. 1998;713(1):91–109.

    Article  CAS  PubMed  Google Scholar 

  12. Gross AS. Best practice in therapeutic drug monitoring. Br J Clin Pharmacol. 1998;46(2):95–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qian H-Z, et al. Current drug use and lack of HIV virologic suppression: point-of-care urine drug screen versus self-report. BMC Infect Dis. 2014;14(1):508.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johansson E, Halldin MM. Urinary excretion half-life of delta 1-tetrahydrocannabinol-7-oic acid in heavy marijuana users after smoking. J Anal Toxicol. 1989;13(4):218–23.

    Article  CAS  PubMed  Google Scholar 

  15. Michely JA, Meyer MR, Maurer HH. Power of Orbitrap-based LC-high resolution-MS/MS for comprehensive drug testing in urine with or without conjugate cleavage or using dried urine spots after on-spot cleavage in comparison to established LC–MSn or GC–MS procedures. Drug Test Anal. 2018;10(1):158–63.

    Article  CAS  PubMed  Google Scholar 

  16. Michely JA, Meyer MR, Maurer HH. Paper spray ionization coupled to high resolution tandem mass spectrometry for comprehensive urine drug testing in comparison to liquid chromatography-coupled techniques after urine precipitation or dried urine spot workup. Anal Chem (Washington). 2017;89(21):11779–86.

    Article  CAS  Google Scholar 

  17. Lee HH, et al. Simultaneous drug identification in urine of sexual assault victims by using liquid chromatography tandem mass spectrometry. Forensic Sci Int. 2018;282:35–40.

    Article  CAS  PubMed  Google Scholar 

  18. Fu S. Adulterants in Urine Drug Testing. Adv Clin Chem. 2016;76:123–63.

    Article  CAS  PubMed  Google Scholar 

  19. Wolff K, et al. File name: Expert Panel Review of alternative biological matrices for use as an evidential sample for drug driving Expert Panel Review of alternative biological matrices for use as an evidential sample for drug driving. Department for Transport Expert Panel; 2017.

    Google Scholar 

  20. Dawes C, et al. The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol. 2015;60(6):863–74.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang C-Z, et al. Saliva in the diagnosis of diseases. Int J Oral Sci. 2016;8(3):133–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drummer OH. Drug testing in oral fluid. Clin Biochem Rev. 2006;27(3):147–59.

    PubMed  PubMed Central  Google Scholar 

  23. Avataneo V, et al. LC-MS application for therapeutic drug monitoring in alternative matrices. J Pharm Biomed Anal. 2019;166:40–51.

    Article  CAS  PubMed  Google Scholar 

  24. Nunes LAS, Brenzikofer R, Macedo DV. Reference intervals for saliva analytes collected by a standardized method in a physically active population. Clin Biochem. 2011;44(17):1440–4.

    Article  CAS  PubMed  Google Scholar 

  25. Burckhardt BB, Tins J, Laeer S. Liquid chromatography–tandem mass spectrometry method for determination of aliskiren in saliva and its application to a clinical trial with healthy volunteers. J Pharm Biomed Anal. 2014;96:118–26.

    Article  CAS  PubMed  Google Scholar 

  26. Ghareeb M, Akhlaghi F. Alternative matrices for therapeutic drug monitoring of immunosuppressive agents using LC-MS/MS. Bioanalysis. 2015;7(8):1037–58.

    Article  CAS  PubMed  Google Scholar 

  27. Petrides AK, et al. Monitoring opioid and benzodiazepine use and abuse: is oral fluid or urine the preferred specimen type? Clin Chim Acta. 2018;481:75–82.

    Article  CAS  PubMed  Google Scholar 

  28. Marchei E, et al. New synthetic opioids in biological and non-biological matrices: a review of current analytical methods. TrAC, Trends Anal Chem (Regular ed). 2018;102:1–15.

    Google Scholar 

  29. Cory TJ, et al. Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS. 2013;8(3):190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rizk ML, et al. Importance of drug pharmacokinetics at the site of action. Clin Transl Sci. 2017;10(3):133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Best BM, et al. Low atazanavir concentrations in cerebrospinal fluid. AIDS (London). 2009;23(1):83–7.

    Article  CAS  Google Scholar 

  32. Smith PB, et al. Population pharmacokinetics of Meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr Infect Dis J. 2011;30(10):844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boumba V, Ziavrou K, Vougiouklakis T. Hair as a biological indicator of drug use, drug abuse or chronic exposure to environmental toxicants. Int J Toxicol. 2006;25(3):143–63.

    Article  CAS  PubMed  Google Scholar 

  34. Mali, N., M. Karpe, and V.J. Kadam, A review on biological matrices and analytical methods used for determination of drug of abuse. 2011.

    Google Scholar 

  35. Kintz P, Villain M, Cirimele V. Hair analysis for drug detection. Ther Drug Monit. 2006;28(3):442–6.

    Article  CAS  PubMed  Google Scholar 

  36. Gjerde H, et al. Detection of illicit drugs in oral fluid from drivers as biomarker for drugs in blood. Forensic Sci Int. 2015;256:42–5.

    Article  CAS  PubMed  Google Scholar 

  37. Amponsah SK, et al. Effect of Cellgevity® supplement on selected rat liver Cytochrome P450 enzyme activity and pharmacokinetic parameters of carbamazepine. Evid Based Complement Alternat Med. 2020;7956493:8.

    Google Scholar 

  38. Amponsah SK, Opuni KFM, Antwi KA, Kunkpeh VP. Effect of aminophylline on the pharmacokinetics of amikacin in Sprague-Dawley rats. J Infect Dev Countries. 2019;13(3):251–4.

    Article  CAS  Google Scholar 

  39. Amponsah SK, Opuni KFM, Donkor AA. Animal model investigation suggests betamethasone alters the pharmacokinetics of amikacin. ADMET & DMPK. 2018;6(4):279–83.

    Article  Google Scholar 

  40. Cereghino JJ, et al. Carbamazepine for epilepsy. A controlled prospective evaluation. Neurology. 1974;24(5):401.

    Article  CAS  PubMed  Google Scholar 

  41. Smith TW, Haber E. Digoxin intoxication: the relationship of clinical presentation to serum digoxin concentration. J Clin Invest. 1970;49(12):2377–86.

    Article  PubMed Central  Google Scholar 

  42. Amponsah SK, et al. Population pharmacokinetic characteristics of amikacin in suspected cases of neonatal sepsis in a low-resource African setting: a prospective non-randomized single-site study. Curr Ther Res. 2017;84:e1–e6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. AL R, K S. Drug toxicity. In: Stolerman IP, editor. Encyclopedia of psychopharmacology. Berlin, Heidelberg: Springer; 2010.

    Google Scholar 

  44. Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci (Regular ed). 2019;40(9):624–35.

    Article  CAS  Google Scholar 

  45. Katzung BG. Basic & clinical pharmacology. 14th ed. McGraw-Hill's AccessMedicine. New York: McGraw-Hill Education LLC; 2018.

    Google Scholar 

  46. Reiffel JA. Formulation substitution and other pharmacokinetic variability: underappreciated variables affecting antiarrhythmic efficacy and safety in clinical practice. Am J Cardiol. 2000;85(10):46–52.

    Article  Google Scholar 

  47. Reiffel JA. Issues in the use of generic antiarrhythmic drugs. Curr Opin Cardiol. 2001;16(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson MW, et al. Time course of pharmacokinetic and hormonal effects of inhaled high-dose salvinorin A in humans. J Psychopharm (Oxford). 2016;30(4):323–9.

    Article  CAS  Google Scholar 

  49. Regenthal R, et al. Drug levels: therapeutic and toxic serum/plasma concentrations of common drugs. J Clin Monit Comput. 1999;15(7):529–44.

    Article  CAS  PubMed  Google Scholar 

  50. Sutherland JJ, et al. Assessment of patient medication adherence, medical record accuracy, and medication blood concentrations for prescription and over-the-counter medications. JAMA Netw Open. 2018;1(7):e184196.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hiemke C, et al. Consensus guidelines for therapeutic drug monitoring in Neuropsychopharmacology: update 2017. Pharmacopsychiatry. 2018;51(1/02):9–62.

    Article  CAS  PubMed  Google Scholar 

  52. Meyer FP. Indicative therapeutic and toxic drug concentrations in plasma : a tabulation. Int J Clin Pharmacol Ther. 1994;32(2):71–81.

    CAS  PubMed  Google Scholar 

  53. Schulz M, et al. Beta receptor blockers. Principles for drug selection for rational therapy. Medizinische Monatsschrift fur Pharmazeuten. 1989;12(8):237.

    CAS  PubMed  Google Scholar 

  54. Drummer OH, Baselt RC. Disposition of toxic drugs and chemicals in man, Biomedical Publications, Seal Beach, CA. Elsevier Ireland Ltd; 2015. p. 12.

    Google Scholar 

  55. Piscitelli SC, et al. Therapeutic monitoring and pharmacist intervention in a Hansen's disease clinic. Ann Pharmacother. 1993;27(12):1526–31.

    Article  CAS  PubMed  Google Scholar 

  56. Richter O, et al. Pharmacokinetics of dexamethasone in children. Pediatr Pharmacol (New York). 1983;3(3–4):329.

    CAS  Google Scholar 

  57. Butler DR, Kuhn RJ, Chandler MHH. Pharmacokinetics of anti-infective agents in paediatric patients. Clin Pharmacokinet. 1994;26(5):374–95.

    Article  CAS  PubMed  Google Scholar 

  58. Skeith KJ, Brocks DR. Pharmacokinetic optimisation of the treatment of osteoarthritis. Clin Pharmacokinet. 1994;26(3):233–42.

    Article  CAS  PubMed  Google Scholar 

  59. Jurgens G, Graudal NA, Kampmann JP. Therapeutic drug monitoring of antiarrhythmic drugs. Clin Pharmacokinet. 2003;42(7):647–63.

    Article  PubMed  Google Scholar 

  60. White RH, et al. Changes in plasma warfarin levels and variations in steady-state prothrombin times. Clin Pharmacol Ther. 1995;58(5):588–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Kwabena Amponsah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amponsah, S.K., Pathak, Y.V. (2022). Therapeutic and Toxic Concentrations of Drugs in Biological Matrices. In: Amponsah, S.K., Pathak, Y.V. (eds) Recent Advances in Therapeutic Drug Monitoring and Clinical Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-031-12398-6_1

Download citation

Publish with us

Policies and ethics