Skip to main content

Cloud Electrification as a Source of Ignition for Hydrogen Lift-Gas Airships Disasters

  • Conference paper
  • First Online:
14th Chaotic Modeling and Simulation International Conference (CHAOS 2021)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

  • 386 Accesses

Abstract

The first half of the twentieth century became the Golden Age of the dirigible airship. After the Hindenburg disaster, (1937), the dirigible use fell into rapid decline leaving the non-rigid airships to serve in maritime roles until the mid 1960s. Throughout dirigible and non-rigid use, violent storm systems have been associated with in-flight airship disasters. In particular, the popular press at time instilled into the public perception that lightning strikes were the guilty ignition source of the disasters. Over the past 25 years, Saint Elmo’s Fire has come forward as an alternative ignition source for in-flight airship disasters. Understanding the role of low energy discharges events is important for the emerging hydrogen economy that is intended to reduce the world’s energy consumption and greenhouse emissions. This paper reviews 2H2 + O2 = 2H2O combustion chemistry, the role of heterogeneous graupel chemistry within electrification of Cumulonimbus, and how the empirical mathematical construct of Peek’s Law which attempts to identify the visual inception voltage in terms of the minimum electrical field stress required for the generation of Saint Elmo’s Fire. Using this electrochemical knowledge, in-flight airship disasters associated with nearby cloud electrification, or violent storms systems, are correlated and reviewed. This study is supported by firsthand accounts (from survivors), including radio messages prior to an airship disaster, ground eyewitness accounts, along with the structural design of the airship. The hydrogen lift-gas airships reviewed here are four dirigibles (LZ-4 (L-10), SL-9, Dixmude and Hindenburg) and one non-rigid airship (NS.11). As a comparative control, this paper reviews the worst airship disaster, that of the helium lift-gas flying aircraft carrier, USS Akron (ZRS-4), which led to the loss of 73 lives. In addition to that of the sister airship, USS Macon (ZRS-5) disaster where two lives were also lost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F.W. Peek, Dielectric Phenomena in High Voltage Engineering, 2nd edn. (McGraw Book Company, Inc, New York, USA, 1920)

    Google Scholar 

  2. V.J. Law, D.P. Dowling, The St Elmo’s fire: its formation and measurement on both natural and artificial structures, in Springer Proceedings in Complexity, 13th Chaotic Modeling Simulation International Conference, eds. C. Skiadas, Y. Diomtiakis, Chap 34 (2021). ISBN: 978-3-030-70794-1

    Google Scholar 

  3. V.J. Law, D.P. Dowling, Application of microwave oven plasma reactors for the formation of carbon-based nanomaterials, in Springer Proceedings in Complexity, 13th Chaotic Modeling Simulation International Conference, eds. C. Skiadas, Y. Diomtiakis, Chap 35 (2021). ISBN 978-3-030-70794-1

    Google Scholar 

  4. W. Shakespeare, The Tempest. (Act 1, Scene 2). First Folio, eds. E. Blount, I. Jaggard (London, 1623)

    Google Scholar 

  5. Meessen, Ball lightning: bubbles of electronic plasma oscillations. J. Unconvent. Electromag Plasmas. 4, 163–179 (2012)

    Google Scholar 

  6. A.I. Grigor’ev, D. Grigor’eva, S.O. Shiryaeva, Ball lightning penetration into closed rooms: 43 eyewitness accounts. J. Scient. Explor. 6(3), 261–279 (1992)

    Google Scholar 

  7. M. Donoso, J.L. Trueba, A.F. Rañada, The riddle of ball lightning: a review. Scient World J 6, 254–278 (2006)

    Article  Google Scholar 

  8. J.J. Lowke, D. Smith, K.E. Nelson, R.W. Crompton, A.B. Murph, Birth of ball lightning. J. Geophys. Res. 117, D19107 (2012)

    ADS  Google Scholar 

  9. F. Arago, Sur le tonnerre, Annuaire au Roi par le Bureau des Longitudes. Notices Scientifiques. 221 (1838)

    Google Scholar 

  10. G. Hartwig, The Aerial World. (London. 1886). p 310.

    Google Scholar 

  11. D. Robinson, The Zeppelin in combat: A history of german navel airships division 1912–1918. Schiffer Publishing Ltd US (1997). ISBN: 9780887405105

    Google Scholar 

  12. Langmuir, Oscillations in ionized gases. Proc. Nat. Acad. Sci. U. S. A. 14(8), 627–637 (1928)

    Google Scholar 

  13. W.H. Bostick, Experimental study of ionized matter projected across a magnetic field. Phys. Rev. 104(2), 292–299 (1956)

    Article  ADS  Google Scholar 

  14. C.P. Hall, Rigid verses semi-rigid. Dirigible: J Airship Heritage Trust. 83, 21 (2018)

    Google Scholar 

  15. Report of the R.101 inquery. (His Majesty’s Stationary Office, London, 1931).

    Google Scholar 

  16. S.B. Nelson, Airships in the arctic. Arctic 46(3), 278–283 (1993)

    Article  Google Scholar 

  17. Russian airships of the soviet era 1921–1950. (first printed in http://dolgoprud.org). Reprinted (additional information by N. Caley, H. Bantock and M. Rentell) in Dirigible. J Airship Heritage Trust. 65, 15–17, (2012)

  18. USS Shenandoah. https://www.airships.net/us-navy-rigid-airships/uss-shenandoah/. Accessed May 2021

  19. S. Snelling (Features editor), R-33. Dirigible: J Airship Balloon Museum V(1), 18–20 (1995)

    Google Scholar 

  20. D’Orcy L, D’Orcy’s airship manual: an international register of airships with compendium of the airships elementary mechanics. (Century, Co. New York, 1917)

    Google Scholar 

  21. L. Chollet, Balloon fabric made of goldbeater skins. L′ Aéronautique, August 1922

    Google Scholar 

  22. Goldbeaters skins for airships. Dirigible: The Journal of the Airship Heritage Trust. IX(3–4), 20, (1998–99). The original article appeared in the Yorkshire Post on 28 March 1919

    Google Scholar 

  23. G. Camplin, Stealing the weinling family secerts. J Airship Heritage Trust. 66, 10–11 (2012)

    Google Scholar 

  24. J. Mckechnie, Fabric for gasbags for aircraft and method of manufacturing the same. US. Patent 1,301,955 (issued April 29, 1919)

    Google Scholar 

  25. M. Steadman, The cow and the airship, MuseumPosten and Post & Tele (2006)

    Google Scholar 

  26. A. Thomas, Politics and propaganda: a theory to explain the loss of the hindenbug. Dirigible: J. Airship Heritage Trust. 73, 26–27, (2014)

    Google Scholar 

  27. F.A.G. Rendondo, Leonardo Torres Quevedo 1902–1908: the foundation for 100 years of airship design, in The 7th international airship convention (2008). Document ID 71192

    Google Scholar 

  28. M.J. Dunn, H.M.A, NS11 and the world endurance record. Dirigible: J. Airship Heritage Trust. 71, 12–16 (2014)

    Google Scholar 

  29. G.L. Faurote, Feasibility study of modern airships (phase I) vol III- historical overview (task I). Goodyear Aerospace Corporation. (1975). https://ntrs.nasa.gov/citations/19750023961. Accessed May 2021

  30. G. Camplin. The wooden ones. Dirigible: J Airship Heritage Trust. 84, 17, (2018)

    Google Scholar 

  31. B.N. Wallis. Rigid airship. US. Patent 1,675,009 (issued June 26, 1928)

    Google Scholar 

  32. C.P. Hall. Two conflicting patents: a question of an origin of invention. Dirigible: J Airship Heritage Trust. 84, 18–20 (2018)

    Google Scholar 

  33. P. Garwood, The vortex gun and other air defence weapons. Dirigible: J Airship Heritage Trust. 67, 10–12 (2012)

    Google Scholar 

  34. J. Frith, The a2 mobile silicol plant mk1. Dirigible: J. Airship Heritage Trust. 79, 14–15, (2016)

    Google Scholar 

  35. U. Mass, J. Warnatz, Ignition process in hydrogen-oxygen mixtures. Combust. Flame 74, 54–69 (1988)

    Google Scholar 

  36. P.W. Aktins, Physical Chemistry, 2nd edn. (Oxford University Press, UK, 1982)

    Google Scholar 

  37. Hydrogen explosions (slow motion)—Periodic Table of Videos. https://www.youtube.com/watch?v=qOTgeeTB_kA. Accessed March 2021

  38. C. Saunders, Charge separation mechanisms in clouds. J. Appl. Meteorol., 335–353 (1993)

    Google Scholar 

  39. T.V. Prevenslik. A unified theory for sprites, st. elmo’s fire, and ball lighting. J. Metrol. 26(260), 204–211

    Google Scholar 

  40. E.M. Wescott, D.D. Sentman, M.J. Heavner, T.J. Hallinan, D.L. Hampton, D.L. Osborn, The optical spectrum of aircraft St. elmo’s fire. Geophys. Res. Lett. 23(25), 3687–3690 (1996)

    Google Scholar 

  41. A.I. Grigor’ev, I.D. Grigor’eva and S.O. Shiryava, Ball lightning and St. elmo’s fire as forms of thunderstorm activity. J. Scient. Explor. 5(2), 163–190 (1991)

    Google Scholar 

  42. D.P. Dowling, F.T. O’Neill, V. Milosavljević, V.J. Law, DC pulsed atmospheric pressure plasma jet image information. IEEE Trans Plasma Sci. 39(11), 2326–2327 (2011)

    Article  ADS  Google Scholar 

  43. S. Hughes, Green fireballs and ball lightning. Proc. R. Soc. A. 467, 1427–1448 (2011)

    Article  ADS  Google Scholar 

  44. H. Eckener. Technical Memorandum No. 256. Lost of the Dixmude. Translated from the Luftfahrt. January 23, pp 1–3 (1924). https://digital.library.unt.edu/ark:/67531/metadc56906/m1/2/. Accessed May 2021

  45. R.H. Marriott, Radio range variations. Proc. IRE. 2(3), 37–52 (1914)

    Article  Google Scholar 

  46. R.A. Perala. A critical review of precipitation static research since the 1930’s and comparison with aircraft charging by dust (2009). https://www.ema3d.com/wp-content/uploads/downloads/AEP_3.pdf. Accessed May 2021

  47. R.H. Bryan, T.L.J. Wilmette, Loop antenna shield. US. Patent 2,419,480 (issued April 22, 1947)

    Google Scholar 

  48. M. Marsaldi, D.M. Smith, S. Brandt, M.S. Briggs, C.Budtz-JØrgenson, R. Campana, et al., High-energy radiation from thunderstorms and lightning with LOFT. arXiv:1501.02775v1 [astro-ph.HE] 12 Jan 2015

  49. M. Goldman, A. Goldman, R.S. Sigmond, The corona discharge, its properties and specific uses. Pure Appl. Chem. 57(9), 1353–1362 (1985)

    Article  Google Scholar 

  50. A.S. Gibson, Jeremy A. Rioussety, V.P. Pasko. Minimum breakdown voltage for corona discharge in cylindrical and spherical geometries. Ann. Res. J. Electr. Eng. Res. Exp. Undergrad. Penn State. 7, 1–17 (2009)

    Google Scholar 

  51. N.L. Aleksandrov, E.M. Bazelyan, F. D’Alessandro, Y.P. Raizer, Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures. J. Electrostat. 64(12), 802–816 (2006)

    Article  Google Scholar 

  52. W. Grassi, D. Testi, Induction of waves on a horizontal water film by an impinging corona wind. IEEE Trans. Dielectr. Electr. Insul. 16(2), 337–385 (2009)

    Article  Google Scholar 

  53. C. Guerra‐Garcia, N.C. Nguyen, T. Mouratidis, M. Martinez‐Sanchez, Corona discharge in wind for electrically isolated electrodes. JGR: Atmos. 125(6), e2020JD032908 (2020)

    Google Scholar 

  54. P. Carradice. The zeppelin: an illustrated history. (Fonhill Media, 2017). https://www.airships.net/hydrogen-airship-accidents/. Accessed May 2021

  55. https://www.wrecksite.eu/wreck.aspx?259426. Accessed May 2021

  56. J. Passivirta, Finland and Europe: the early years of independence 1917–1939 (Finish historical Society, Helsinki, Finland, 1988)

    Google Scholar 

  57. https://en.wikipedia.org/wiki/List_of_Sch%C3%BCtte-Lanz_airships. Accessed May 2021

  58. N. Walmsley, The loss of N.S.11—a local view. Dirigible: J. Airship Balloon Mus. V(2), 5–10 (1994)

    Google Scholar 

  59. N. Peake, The loss of NS11. Dirigible: J. Airship Balloon Mus. VI(2), 5 (1995)

    Google Scholar 

  60. N.B. Peake, NS11 and the greasy cloud. Dirigible: J. Airship Balloon Mus. V(2), 1011 (1994). Reprinted in Dirigible: J. Airship Heritage Trust. 71, 16–17 (2014)

    Google Scholar 

  61. Dixmude (airship) https://en.wikipedia.org/wiki/Dixmude_(airship). Accessed May 2021

  62. Dixmude (LZ114) (+1923) https://www.wrecksite.eu/wreck.aspx?230834. Accessed May 2021

  63. D.G. Ridley-Kitts, Dixmude (part 1): the biggest aerial cruiser of the french navel air arm -1920. Dirigible: J. Airship Heritage Trust. 60, 12–13 (2010)

    Google Scholar 

  64. D.G. Ridley-Kitts, Dixmude (part 2): the biggest aerial cruiser of the french navel air arm -1920. Dirigible: J. Airship Heritage Trust. 61, 12–13 (2010)

    Google Scholar 

  65. D.G. Ridley-Kitts, Dixmude (part 3- conclusion): the biggest aerial cruiser of the french navel air arm -1920. Dirigible: J. Airship Heritage Trust. 62, 13–14 (2011)

    Google Scholar 

  66. USS akron crash. https://www.youtube.com/watch?v=cLFLAj-9-vU. Accessed May 2021

  67. British Movietone, Akron Test Ends In Tragedy. https://www.youtube.com/watch?v=iJKF3RHKDtY. Accessed May 2021

  68. Loss of the akron, Nature 131, 499–500 (1933)

    Google Scholar 

  69. https://www.airships.net/us-navy-rigid-airships/uss-akron-macon/. Accessed May 2021

  70. C.P. Hall, Two tales of R100 failed tail. Dirigible: J. Airship Heritage Trust 60, 18–21 (2010)

    Google Scholar 

  71. Hindenburg Disaster—Real Footage (1937) | British Pathé. https://www.youtube.com/watch?v=fURATK5Yt30. Accessed March 2021

  72. A. Bain, W.D. Van Vorst, The hindenburg tragedy revisited: the fatal flaw found. Int. J. Hydrogen Energy 24, 392–403 (1999)

    Google Scholar 

  73. R.G. van Treuren, What happen to the Hindenburg…indeed. Dirigible: J. Airship Heritage Trust. X1(3), 4–6, (2000)

    Google Scholar 

  74. A.J. Dressler, The hindenburg hydrogen fire: fatal flaws in the addison bain incendiary-paint theory, p. 21 (2004) https://spot.colorado.edu/~dziadeck/zf/LZ129fire.pdf. Accessed May 2021

  75. A.J. Dressler, D.E. Overs, W.H. Appleby, The hindenburg fire: hydrogen or incendiary-paint. Buoyant Flight. 52(2–3), p. 11 (2005)

    Google Scholar 

  76. D.H. Robinson, LZ-129 Hindenburg, 1st edn. (Arco Publishing Co, New York, 1964)

    Google Scholar 

  77. T. Terrel. LZ-129 hindenburg. Curious dragonfly LLC. (2002). https://curiousdragonflycom.files.wordpress.com/2017/12/the-hindenburg.pdf. Accessed May 2021

  78. D. Grossman, What destroyed the hindenburg. Channel4.com (2013)

    Google Scholar 

  79. C. O’Dell, Crash of the hindenburg (Herbert Morrison, reporting) (6 May, 1937). National Registry (2002)

    Google Scholar 

  80. A. Codfod. (https://commons.wikimedia.org/wiki/File:Hindenburg_disaster_(1).jpg). Accessed May 2021

  81. H. Lau, Testimony to board of inquiry. http://facesofthehindenburg.blogspot.com/search/label/Helmut%20Lau. Accessed May 2021

  82. W.M. Nelson, Heat treatment of duralumin. Aviation 362–365 (1927). National Advisory Committee for Aeronautics. Technical Memorandum. No 401. (1927). https://ntrs.nasa.gov/search.jsp?R=19930090764. Accessed May 2021

Download references

Acknowledgements

The Authors declare that there is no conflict of interest regarding the publication of this paper. The Authors dedicate this work to all the people who perished in airship disasters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. J. Law .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Law, V.J., Dowling, D.P. (2022). Cloud Electrification as a Source of Ignition for Hydrogen Lift-Gas Airships Disasters. In: Skiadas, C.H., Dimotikalis, Y. (eds) 14th Chaotic Modeling and Simulation International Conference. CHAOS 2021. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-96964-6_19

Download citation

Publish with us

Policies and ethics