Skip to main content

Body Size Evolution and Locomotion in Sauropodomorpha: What the South American Record Tells Us

  • Chapter
  • First Online:
South American Sauropodomorph Dinosaurs

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The transition from early sauropodomorphs to sauropods is of special interest given that a shift from obligatory or facultative bipedalism to an obligatory quadrupedalism is evident. In this chapter, we review and discuss the biological mechanisms underpinning such evolutionary transformations. The discovery of the South American sauropodomorph Mussaurus patagonicus has helped elucidate changes in the upper forelimb from bipedality to quadrupedality. Shoulder range of motion studies has shown that Mussaurus could not protract its forelimb past vertical, which suggests that quadrupedal locomotion could not have been possible, although it might have been if the elbow was habitually strongly flexed, as has been hypothesized for ornithischian quadrupeds. Yet muscle moment arm studies indicated that Mussaurus could not straighten its elbow, suggesting it did not have columnar forelimbs like later, fully quadrupedal sauropods. Quadrupedal locomotion first evolved in the adult forms of the sauropodomorphs closest to Sauropoda (e.g., Melanorosaurus). However, it has been suggested that already some early sauropodomorphs (e.g., Massospondylus) were quadrupedal during early ontogenetic stages and adopted a bipedal stance, at least facultatively, as adults. The postural shifting that some sauropodomorphs experienced during their ontogeny has important implications for understanding evolutionary processes that caused those shifts. Available ontogenetic series of Mussaurus provide additional insight into these evolutionary developmental transitions. The body’s center of mass of this species moved from a position in the mid-thorax to a more posterior position close to the pelvis, consistent with a shift from quadrupedalism to bipedalism at a young age. This postural modification could be the product of the relative enlargement of the tail and the reduction of the neck during ontogeny, challenging previous studies, which emphasized that that transformation would have been linked to a relative enlargement of the forelimbs. Viewed in a phylogenetic context, the South American sauropodomorph record provides key information regarding the evolution of body size and limb mechanics in this group. An anterior center of mass shift occurred during the evolution of quadrupedalism in the Late Triassic, followed by a more striking anterior shift in Late Jurassic–Cretaceous titanosauriforms, a phenomenon apparently closely linked with locomotion (e.g., weight distribution; reduced athleticism) and environment. As South American titanosaurs included the largest land animals ever, these also inform us about the constraints on terrestrial gigantism and the surprising diversity of giant forms that can exist despite these biomechanical and other constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 189.00
Price excludes VAT (USA)
Softcover Book
USD 249.99
Price excludes VAT (USA)
Hardcover Book
USD 249.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317

    Article  Google Scholar 

  • Alberch P (1980) Ontogenesis and morphological diversification. Am Zool 20:653–667

    Article  Google Scholar 

  • Allen VA, Bates KT, Li Z, Hutchinson JR (2013) Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs. Nature 497:104–107

    Article  Google Scholar 

  • Allain R, Aquesbi N (2008) Anatomy and phylogenetic relationships of Tazoudasaurus naimi (Dinosauria, Sauropoda) from the late Early Jurassic of Morocco. Geodiversitas 30:345–424

    Google Scholar 

  • Apaldetti CG, Martínez RN, Cerda IA, Pol D, Alcober OA (2018) An early trend towards gigantism in Triassic sauropodomorph dinosaurs. Nature Ecol Evol 2:1227–1232

    Article  Google Scholar 

  • Bakker RT (1978) Dinosaur feeding behavior and the origin of flowering plants. Nature 274:661–663

    Article  Google Scholar 

  • Barrett PM, Upchurch P (2005) Sauropod diversity through time: possible macroevolutionary and palaeoecological implications. In: Curry Rogers KA, Wilson J (eds) The Sauropods: evolution and paleobiology. University of California Press, Berkeley, pp 125–156

    Google Scholar 

  • Barrett PM (2014) Paleobiology of herbivorous dinosaurs. Annu Rev Earth Planet Sci 42:207–230

    Article  Google Scholar 

  • Barrett PM, Maidment SCR (2017) The evolution of ornithischian quadrupedality. J Iber Geol 43:363–377

    Article  Google Scholar 

  • Bates KT, Mannion PD, Falkingham PL, Brussatte SL, Hutchinson JR, Otero A, Sellers WI, Sullivan C, Stevens KA, Allen V (2016) Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Royal Soc Open Sci 3:150636

    Google Scholar 

  • Benoit J, Legendre LJ, Farke AA, Neenan JM, Mennecart B, Costeur L, Merigeaud S, Manger PR (2020) A test of the lateral semicircular canal correlation to head posture, diet and other biological traits in “ungulate” mammals. Sci Rep 10:19602

    Article  Google Scholar 

  • Benson RBJ, Campione NE, Carrano MT, Mannion PD, Sullivan C, Upchurch P, Evans DC (2014) Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol 12:e1001853

    Google Scholar 

  • Benson RBJ, Hunt G, Carrano MT, Campione N (2018) Cope’s rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61(1):13–48

    Article  Google Scholar 

  • Biewener AA (1989) Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45–48

    Article  Google Scholar 

  • Bishop PJ, Bates KT, Allen VR, Henderson DM, Randau M, Hutchinson JR (2020) Relationships of mass properties and body proportions to locomotor habit in terrestrial Archosauria. Palaeobiology 46:550–568

    Article  Google Scholar 

  • Bonaparte JF, Vince M (1979) El hallazgo del primer nido de Dinosaurios Triásicos (Saurischia, Prosauropoda), Triásico Superior de Patagonia, Argentina. Ameghiniana 16:173–182

    Google Scholar 

  • Bonaparte JF, Powell JE (1980) A continental assemblage of tetrapods from the Upper Cretaceous beds of El Brete, North-Western Argentina (Sauropoda-Coelurosauria-Carnosauria-Aves). Mémories De La Sociéte Géologique De France, Nouvelle Série 139:19–28

    Google Scholar 

  • Bonaparte JF, Coria RA (1993) Un nuevo y gigantesco sauropodo titanosaurio de la Formación Rio Limay (Albiano-Cenomaniano) de la Provincia del Neuquén, Argentina. Ameghiniana 30:271–282

    Google Scholar 

  • Bonnan MF (2003) The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny. J Vertebr Paleontol 23:595–613

    Article  Google Scholar 

  • Bonnan MF, Senter P (2007) Were the basal sauropodomorph dinosaurs Plateosaurus and Massospondylus habitual quadrupeds? Spec Pap Palaeontol 77:139–155

    Google Scholar 

  • Bonnan MF, Yates A (2007) A new description of the forelimb of the basal sauropodomorph Melanorosaurus: implications for the evolution of pronation, manus shape, and quadrupedalism in sauropod dinosaurs. Spec Pap Palaeontol 77:157–168

    Google Scholar 

  • Brusatte SL, Nesbitt SJ, Irmis RB, Butler RJ, Benton MJ, Norell MA (2010) The origin and early radiation of dinosaurs. Earth Sci Rev 101:68–100

    Article  Google Scholar 

  • Butler RJ, Smith RMH, Norman DB (2007) A primitive ornithischian dinosaur from the Late Triassic of South Africa, and the early evolution and diversification of Ornithischia. Proc R Soc B 274:2041–2046

    Article  Google Scholar 

  • Button DJ, Rayfield EJ, Barrett PM (2014) Cranial biomechanics underpins high sauropod diversity in resource-poor environments. Proc R Soc B 281:20142114

    Article  Google Scholar 

  • Button DJ, Barrett PM, Rayfield EJ (2017) Craniodental functional evolution in sauropodomorph dinosaurs. Paleobiology 43:435–462

    Article  Google Scholar 

  • Cabreira SF, Kellner AWA, da-Silva SD, da Silva LR, Bronzati M, Marsola JCA, Müller RT, Bittencourt JS, Batista BJA, Raugust T, Carrilho R, Brodt A, Langer MC (2016) A unique late Triassic dinosauromorph assemblage reveals dinosaur ancestral anatomy and diet. Curr Biol 26:390–395

    Google Scholar 

  • Campione NE (2017) Extrapolating body masses in large terrestrial vertebrates. Paleobiology 43:693–699

    Article  Google Scholar 

  • Campione N, Evans D (2012) A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol 10:60

    Article  Google Scholar 

  • Campione N, Evans D (2020) The accuracy and precision of body mass estimation in non-avian dinosaurs. Biol Rev 95:1759–1797

    Article  Google Scholar 

  • Carballido JL, Pol D, Otero A, Cerda IA, Salgado L, Garrido AC, Ramezani J, Cúneo NR, Krause JM (2017) A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc R Soc B 284:20171219

    Article  Google Scholar 

  • Carrano MT (1998) Locomotion in non-avian dinosaurs: integrating data from hind limb kinematics, in vivo strains, and bone morphology. Paleobiology 24:450–469

    Article  Google Scholar 

  • Carrano MT (2005) The evolution of Sauropod locomotion: Morphological diversity of a secondarily quadrupedal radiation. In: Curry Rogers KA, Wilson JA (eds) The Sauropods: evolution and paleobiology. University of California Press, Berkeley, pp 229–249

    Google Scholar 

  • Cerda IA, Pol D, Chinsamy A (2013) Osteohistological insights into the early stages of growth in Mussaurus patagonicus (dinosaurian, sauropodomorpha). Historical Biol: An Int J Paleobiol 26:110–121

    Article  Google Scholar 

  • Cerda IA, Chinsamy A, Pol D (2014) Unusual endosteally formed bone tissue in a Patagonian basal sauropodomorph dinosaur. Anat Rec 297:1385–1391

    Article  Google Scholar 

  • Cerda IA, Chinsamy A, Pol D, Apaldetti C, Otero A, Powell JE, Martínez RN (2017) Novel insight into the origin of the growth dynamics of sauropod dinosaurs. PLoS ONE 12:e0179707

    Google Scholar 

  • Chapelle KEJ, Benson RBJ, Stiegler J, Otero A, Zhao Q, Choiniere JN (2020a) A quantitative method for inferring locomotory shifts in amniotes during ontogeny, its application to dinosaurs and its bearing on the evolution of posture. Palaeontology 63:229–242

    Article  Google Scholar 

  • Chapelle KEJ, Fernandez V, Choiniere JN (2020b) Conserved in-ovo cranial ossification sequences of extant saurians allow estimation of embryonic dinosaur developmental stages. Sci Rep 10:4224

    Article  Google Scholar 

  • Christian A, Dzemski G (2011) Neck posture in sauropods. In: Klein N, Remes K, Gee CTv Sander PM, (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington, pp 249–260

    Google Scholar 

  • Company J (2011) Bone histology of the titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from the Latest Cretaceous of Spain. Naturwissenschaften 98:67–78

    Article  Google Scholar 

  • Cooper MR (1984) A reassesment of Vulcanodon karibaensis Raath (Dinosauria: Saurischia) and the origin of the Sauropoda. Palaeontol Afr 25:203–231

    Google Scholar 

  • de Beer GS (1937) The development of the vertebrate skull. University of Chicago Press, Chicago

    Google Scholar 

  • Ede DA (1978) An introduction to developmental biology. Wiley, New York

    Google Scholar 

  • Fabbri M, Navalón G, Koch NM, Hanson M, Petermann H, Bhullar BA (2021) A shift in ontogenetic timing produced the unique sauropod skull. Evolution. https://doi.org/10.1111/evo.14190

    Article  Google Scholar 

  • Fujiwara SI, Taru H, Suzuki D (2010) Shape of articular surface of crocodilian (Archosauria) elbow joints and its relevance to sauropsids. J Morphol 271:883–896

    Google Scholar 

  • Galton PM, Upchurch P (2004) Prosauropoda. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. University of California Press, Berkeley, pp 232–258

    Chapter  Google Scholar 

  • Gatesy SM, Dial KP (1996) Locomotor modules and the evolution of avian flight. Evolution 50:331–340

    Article  Google Scholar 

  • Gatesy SM, Bäker M, Hutchinson JR (2009) Constraint-based exclusion of limb poses for reconstructing theropod dinosaur locomotion. J Vertebr Paleontol 29:535–544

    Article  Google Scholar 

  • Gilmore CW (1925) A nearly complete articulated skeleton of Camarasaurus, a saurischian dinosaur from the Dinosaur National monument, Utah. Memoirs of the Carnegie Museum 10:347–384

    Article  Google Scholar 

  • Gomani EM (2005) Sauropod dinosaurs from the Early Cretaceous of Malawi Africa. Paleontol Electron 27A:37

    Google Scholar 

  • González Riga BJ (2011) Speeds and stance of titanosaur sauropods: analysis of Titanopodus tracks from the Late Cretaceous of Mendoza, Argentina. An Acad Bras Ciênc 83(1):279–290

    Article  Google Scholar 

  • González Riga BJ, Calvo JO (2009) A new wide-gauge sauropod track site from the Late Cretaceous of Mendoza, Neuquén basin Argentina. Palaeontology 52(3):631–640

    Article  Google Scholar 

  • González Riga BJ, Lamanna MC, Ortiz David LD, Calvo JO, Coria JP (2016) A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot. Sci Rep 6:19165

    Article  Google Scholar 

  • González Riga BJ, Tomaselli MB (2019) Different trackway patterns in titanosaur sauropods: analysis of new Titanopodus tracks from the Upper Cretaceous of Mendoza, Neuquén Basin, Argentina. Cretac Res 93:49–59

    Article  Google Scholar 

  • Gould SJ (1980) The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology 6:96–118

    Article  Google Scholar 

  • Hechenleitner EM, Leuzinger L, Martinelli AG, Rocher S, Fiorelli LE, Taborda JR, Salgado L (2020) Two late Cretaceous sauropods reveal titanosaurian dispersal across South America. Commun Biol 3(1):1–13

    Article  Google Scholar 

  • Herendeen PS, Friis EM, Pedersen KR, Crane PR (2017) Palaeobotanical redux: revisiting the age of the angiosperms. Nature Plants 3:17015

    Article  Google Scholar 

  • Holliday CM, Ridgely RC, Sedlmayr JC, Witmer LM (2010) Cartilaginous epiphyses in extant archosaurs and their implications for reconstructing limb function in dinosaurs. PLOS ONE 5(9):e13120

    Google Scholar 

  • Hone DWW, Keesey TM, Pisani D, Purvis A (2005) Macroevolutionary trends in the Dinosauria: cope’s rule. J Evol Biol 18:587–595

    Article  Google Scholar 

  • Huber BT, Norris RD, MacLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123–126

    Article  Google Scholar 

  • Hutson JD (2014) Quadrupedal dinosaurs did not evolve fully pronated forearms: new evidence from the Ulna. Acta Palaeontol Pol 60:599–610

    Google Scholar 

  • Hutson JD, Hutson KN (2015) An examination of forearm bone mobility in Alligator mississippiensis (Daudin, 1802) and Struthio camelus Linnaeus, 1758 reveals that Archaeopteryx and dromaeosaurs shared an adaptation for gliding and/or flapping. Geodiversitas 37:325–344

    Article  Google Scholar 

  • Hutson JD, Hutson KN (2017) An investigation of the locomotor function of therian forearm pronation provides renewed support for an arboreal, chameleon-like evolutionary stage. J Mamm Evol 24:159–177

    Article  Google Scholar 

  • Ibiricu LM, Martínez RD, Casal GA (2018) The pelvic and hind limb myology of the basal titanosaur Epachthosaurus sciuttoi (Sauropoda: Titanosauria). Hist Biol 32:773–788

    Article  Google Scholar 

  • Ikejiri T, Tidwell V, Trexler DL (2005) New adult specimens of Camarasaurus lentus highlight ontogenetic variation within species. In: Tidwell V, Carpenter K (eds) Thunder-Lizards: the Sauropodomorph dinosaurs. Indiana University Press, Bloomington, pp 154–179

    Google Scholar 

  • Klages JP, Salzmann U, Bickert T, Hillenbrand CD, Gohl K, Kuhn G, Bohaty SM, Titschack J, Müller J, Frederichs T, Bauersachs T, Ehrmann W, van de Flierdt T, Simões Pereira P, Larter RD, Lohmann G, Niezgodzki I, Uenzelmann-Neben G, Zundel M, Spiegel C, Mark C, Chew D, Francis JE, Nehrke G, Schwarz F, Smith JA, Freudenthal T, Esper O, Pälike H, Ronge TA, Dziadek R, the Science Team of Expedition PS104 (2020) Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580:81–86

    Google Scholar 

  • Klein N, Sander PM (2008) Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34:247–263

    Article  Google Scholar 

  • Klinkhamer AD, Mallison H, Poropat SF, Sinapius GHK, Wroe S (2018) Three-dimensional musculoskeletal modeling of the sauropodomorph hind limb: the effect of postural change on muscle leverage. Anat Rec 301:2145–2163

    Article  Google Scholar 

  • Klinkhamer AD, Mallison H, Poropat SF, Sloan T, Wroe S (2019) Comparative three-dimensional moment arm analysis of the sauropod forelimb: implications for the transition to a wide-gauge stance in titanosaurs. Anat Rec 302:794–817

    Article  Google Scholar 

  • Kundrát M, Coria RA, Manning TW, Snitting D, Chiappe LM, Nudds J, Ahlberg PE (2020) Specialized craniofacial anatomy of a titanosaurian embryo from Argentina. Curr Biol 30:4263–4269

    Article  Google Scholar 

  • Lacovara KJ, Lamanna MC, Ibiricu LM, Poole JC, Schroeter ER, Ullmann PV, Voegele KK, Boles ZM, Carter AM, Fowler EK, Egerton VM, Moyer AE, Coughenour CL, Schein JP, Harris JD, Martınez RD, Novas FE (2014) A gigantic, exceptionally complete titanosaurian sauropod dinosaur from Southern Patagonia Argentina. Sci Rep 4:6196

    Article  Google Scholar 

  • Lehman TM, Coulson AB (2002) A juvenile specimen of the sauropod dinosaur Alamosaurus sanjuanensis from the Upper Cretaceous of Big Bend National Park Texas. J Paleont 76:156–172

    Article  Google Scholar 

  • Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. PNAS 109:16217–16221

    Article  Google Scholar 

  • Levinton JS, Simon CM (1980) A critique of the punctuated equilibria model and implications for the detection of speciation in the fossil record. Syst Zool 29:130–142

    Article  Google Scholar 

  • Long JA, McNamara KJ (1997) Heterochrony: the key to dinosaur evolution. Dinofest lnternational, Arizona, pp 113–123

    Google Scholar 

  • Maidment SCR, Barrett PM (2011) The locomotor musculature of basal ornithischian dinosaurs. J Vertebr Paleontol 31:1265–1291

    Article  Google Scholar 

  • Maidment SCR, Barrett PM (2012) Does morphological convergence imply functional similarity? A test using the evolution of quadrupedalism in ornithischian dinosaurs. Proc Royal Soc B: Biol Sci 279:3765–3771

    Article  Google Scholar 

  • Mallison H (2010a) The digital Plateosaurus I: body mass, mass distribution, and posture assessed using CAD and CAE on a digitally mounted complete skeleton. Palaeontol Electron 13:1–26

    Google Scholar 

  • Mallison H (2010b) The digital Plateosaurus II: an assessment of the range of motion of the limbs and vertebral column and of previous reconstructions using a digital skeletal mount. Acta Palaeontol Pol 55:433–458

    Article  Google Scholar 

  • Manafzadeh AR, Kambic RE, Gatesy SM (2021) A new role for joint mobility in reconstructing vertebrate locomotor evolution. Proc Natl Acad Sci 118: e2023513118

    Google Scholar 

  • Mannion PD, Upchurch P, Schwarz D, Wings O (2019) Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution. Zool J Linn Soc 185:784–909

    Article  Google Scholar 

  • Martínez RN, Alcober OA (2009) A Basal Sauropodomorph (Dinosauria: aurischia) from the Ischigualasto Formation (Triassic, Carnian) and the Early Evolution of Sauropodomorpha. PLoS ONE 4:e4397

    Google Scholar 

  • Marugán-Lobón J, Chiappe LM, Farke AA (2013) The variability of inner ear orientation in saurischian dinosaurs: testing the use of semicircular canals as a reference system for comparative anatomy. PeerJ 1:e124

    Google Scholar 

  • Mazzetta GV, Christiansen P, Fariña R (2004) Giants and Bizarres: body size of some southern south American Cretaceous dinosaurs. Hist Biol 16:71–83

    Article  Google Scholar 

  • McNamara KJ (1982) Heterochrony and phylogenetic trends. Paleobiology 8:130–142

    Article  Google Scholar 

  • McNamara KJ (1986) A guide to the nomenclature of heterochrony. J Paleontol 60:4–13

    Article  Google Scholar 

  • McPhee BW, Yates AM, Choiniere JN, Abdala F (2014) The complete anatomy and phylogenetic relationships of Antetonitrus ingenipes (Sauropodiformes, Dinosauria): implications for the origins of Sauropoda. Zool J Linn Soc 171:151–205

    Article  Google Scholar 

  • McPhee BW, Benson RBJ, Botha-Brink J, Bordy EM, Choiniere JN (2018) A giant dinosaur from the earliest Jurassic of South Africa and the transition to quadrupedality in early sauropodomorphs. Curr Biol 28:3143–3151

    Article  Google Scholar 

  • Müller RT, Langer MC, Bronzati M, Pacheco CP, Cabreira SF, Dias-da-Silva D (2018) Early evolution of sauropodomorphs: anatomy and phylogenetic relationships of a remarkably well preserved dinosaur from the Upper Triassic of southern Brazil. Zool J Linn Soc 184:1187–1248

    Google Scholar 

  • Müller RT, Garcia MS, Silva SD (2020). Evidências da origem e ascensão dos dinosauros sauropodomorfos preservadas em leitos fossilíferos do Triássico do Sul do Brasil. Terræ Didatica 16:e020013

    Google Scholar 

  • Nau D, Lallensack JN, Bachmann U, Sander PM (2020) Postcranial osteology of the first early-stage juvenile skeleton of Plateosaurus trossingensis from the Norian of Frick, Switzerland. Acta Palaeontol Pol 65:679–708

    Article  Google Scholar 

  • Neenan JM, Chapelle KEJ, Fernandez V, Choiniere JN (2019) Ontogeny of the Massospondylus labyrinth: implications for locomotory shifts in a basal sauropodomorph dinosaur. Palaeontology 62:255–265

    Article  Google Scholar 

  • Novas FE, Salgado L, Calvo JO, Agnolín F (2005) Giant titanosaur (Dinosauria, Sauropoda) from the Late Cretaceous of Patagonia. Revisto Del Museo Argentino De Ciencias Naturales 7:37–41

    Article  Google Scholar 

  • Novas FE, Agnolín FL, Ezcurra MD, Porfiri J, Canale JI (2013) Evolution of the carnivorous dinosaurs during the Cretaceous: the evidence from Patagonia. Cretac Res 45:174–215

    Article  Google Scholar 

  • Otero A (2010) The appendicular skeleton of Neuquensaurus, a Late Cretaceous saltasaurine sauropod from Patagonia, Argentina. Acta Palaeontol Pol 55:299–326

    Article  Google Scholar 

  • Otero A, Vizcaíno SF (2008) Hindlimb musculature and function of Neuquensaurus australis (Sauropoda: Titanosauria). Ameghiniana 45:333–348

    Google Scholar 

  • Otero A, Pol D (2013) Postcranial anatomy and phylogenetic relationships of Mussaurus patagonicus (Dinosauria, Sauropodomorpha). J Vertebr Paleontol 33:1138–1168

    Article  Google Scholar 

  • Otero A, Krupandan E, Pol D, Chinsamy A, Choiniere J (2015) A new basal sauropodiform from South Africa and the phylogenetic relationships of basal sauropodomorphs. Zool J Linn Soc 174:589–634

    Article  Google Scholar 

  • Otero A, Allen V, Pol D, Hutchinson JR (2017) Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia) and Mussaurus patagonicus (Sauropodomorpha). PeerJ 5:e3976

    Google Scholar 

  • Otero A, Cuff A, Allen V, Sumner-Rooney PD, Hutchinson JR (2019) Ontogenetic changes in the body plan of the sauropodomorph dinosaur Mussaurus patagonicus reveal shifts of locomotor stance during growth. Sci Rep 9:7614

    Article  Google Scholar 

  • Otero A, Carballido JL, Pérez Moreno A (2020) The apendicular osteology of Patagotitan mayorum (Sauropoda, Titanosauria). J Vertebr Paleontol 40:e1793158

    Google Scholar 

  • Otero A, Carballido, JL, Salgado, L, Canudo, I, Garrido A (2021) Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquen Province, Argentina. Cretaceous Res 122:104754

    Google Scholar 

  • Otero A, Pol D (In Press) Ontogenetic changes in the postcranial skeleton of Mussaurus patagonicus (Dinosauria, Sauropodomorpha) and phylogenetic relationships of basal sauropodomorphs. J Syst Palaeontol. https://doi.org/10.1080/14772019.2022.2039311

  • Owen-Smith N, Mills MGL (2008) Shifting prey selection generates contrasting herbivore dynamics within a large-mammal predator–prey web. Ecology 89:1120–1133

    Article  Google Scholar 

  • Paul G (2010) The princeton field guide to dinosaurs. Princeton University Press, Princeton

    Google Scholar 

  • Paul G (2019) Determining the largest known land animal: a critical comparison of differing methods for restoring the volume and mass of extinct animals. Ann Carnegie Museum 85:335��358

    Article  Google Scholar 

  • Pierce SE, Clack JA, Hutchinson JR (2012) Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 486:523–526

    Article  Google Scholar 

  • Pol D, Powell JE (2007a) New information on Lessemsaurus sauropoides (Dinosauria: Sauropodomorpha) from the Upper Triassic of Argentina. Spec Pap Palaeontol 77:223–243

    Google Scholar 

  • Pol D, Powell JE (2007b) Skull anatomy of Mussaurus patagonicus (Dinosauria: Sauropodomorpha) from the Late Triassic of Patagonia. Hist Biol 19:125–144

    Article  Google Scholar 

  • Pol D, Nascimento PM, Carvalho AB, Riccomini C, Pires-Domingues RA, Zaher H (2014) A new notosuchian from the Late Cretaceous of Brazil and the phylogeny of advanced notosuchians. PLoS ONE 9:e93105

    Google Scholar 

  • Pol D, Otero A, Apaldetti C, Martínez (2021) Triassic sauropodomorph dinosaurs from South America: the origin and diversification of dinosaur dominated herbivorous faunas. J South Am Earth Sci 107: 103145

    Google Scholar 

  • Pretto FA, Langer MC, Schultz CL (2018) A new dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Brazil provides insights on the evolution of sauropodomorph body plan. Zool J Linn Soc 185:388–416

    Article  Google Scholar 

  • Rauhut OWM, Fechner R, Remes K, Reis K (2011) How to get big in the Mesozoic: the evolution of the sauropodomorph body plan. In: Klein N, Remes K, Gee CT, Sander PM (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington and Indianapolis, pp 119–149

    Google Scholar 

  • Reisz RR, Scott D, Sues HD, Evans DC, Raath MA (2005) Embryos of an early prosauropod dinosaur and their evolutionary significance. Science 309:761–764

    Article  Google Scholar 

  • Reisz RR, Evans DC, Sues HD, Scott D (2010) Embryonic skeletal anatomy of the sauropodomorph dinosaur Massospondylus from the Lower Jurassic of South Africa. J Vert Paleontol 30:1653–1665

    Article  Google Scholar 

  • Reisz RR, Evans DC, Roberts EM, Sues HD, Yates AM (2012) Oldest known dinosaurian nesting site and reproductive biology of the Early Jurassic sauropodomorph Massospondylus. Proc Natl Acad Sci 109:2428–2433

    Article  Google Scholar 

  • Remes K (2008) Evolution of the pectoral girdle and forelimb in Sauropodomorpha (Dinosauria, Saurischia): Osteology, myology and function. Unpublished D. Phil, Thesis, Universität München

    Google Scholar 

  • Salgado L (1999) The macroevolution of Diplodocimorpha (Dinosauria; Sauropoda): a developmental model. Ameghiniana 36:203–216

    Google Scholar 

  • Salgado L, Azpilicueta C (2000) Un nuevo saltasaurino (Sauropoda, Titanosauridae) de la provincia de Río Negro (Formación Allen, Cretácico Superior), Patagonia, Argentina, Ameghiniana 37:259–264

    Google Scholar 

  • Salgado L, Coria RA, Chiappe LM (2005) Osteology of the sauropod embryos from the Upper Cretaceous of Patagonia. Acta Palaeontol Pol 50:79–92

    Google Scholar 

  • Sander PM (2000) Long bone histology of the Tendaguru sauropods: implications for growth and biology. Paleobiology 26:466–488

    Article  Google Scholar 

  • Sander PM, Tückmantel C (2003) Bone lamina thickness, bone apposition rates, and age estimates in sauropod humeri and femora. Paläontol Z 76:161–172

    Article  Google Scholar 

  • Sander PM, Klein N, Buffetaut E, Cuny G, Suteethorn V, Le Loeuff J (2004) Adaptive radiation in sauropod dinosaurs: Bone histology indicates rapid evolution of giant body size through acceleration. Org Divers Evol 4:165–173

    Article  Google Scholar 

  • Sander PM, Christian A, Clauss M, Fechner R, Gee CT, Griebeler EM, Gunja HCH, Hummel J, Mallison H, Perry SF, Preuschoft H, Rauhut OWM, Remes K, Tütken T, Wings O, Witzel U (2011) Biology of the sauropod dinosaurs: the evolution of gigantism. Biol Rev 86:117–155

    Google Scholar 

  • Santucci RM, De Arruda-Campos AC (2012) A new sauropod (Macronaria, Titanosauria) from the Adamantina Formation, Bauru Group, Upper Cretaceous of Brazil and the phylogenetic relationships of Aeolosaurini. Zootaxa 3085:1–33

    Article  Google Scholar 

  • Schwarz D, Frey E, Meyer CA (2007) Novel reconstruction of the orientation of the pectoral girdle in Sauropods. Anat Rec 290:32–47

    Article  Google Scholar 

  • Sellers WI, Margetts L, Coria RA, Manning PL (2013) March of the Titans: the locomotor capabilities of Sauropod dinosaurs. PLoS ONE 8:e78733

    Google Scholar 

  • Senter P, Robins JH (2005) Range of motion in the forelimb of the theropod dinosaur Acrocanthosaurus atokensis, and implications for predatody behaviour. Zool J London 266:307–318

    Article  Google Scholar 

  • Sereno PC (1991) Basal archosaurs: phylogenetic relationships and functional implications. Soc Vertebr Paleontol Memoir 2:53

    Google Scholar 

  • Sereno PC (1997) The origin and evolution of dinosaurs. Annu Rev Earth Planet Sci 25:435–489

    Article  Google Scholar 

  • Sereno PC (2007) Basal Sauropodomorpha: historical and recent phylogenetic hypotheses, with comments on Ammosaurus major (Marsh, 1889). Spec Pap Palaeontol 77:261–289

    Google Scholar 

  • Sereno PC, Martínez RN, Alcober OA (2013) Osteology of Eoraptor lunensis (Dinosauria, Sauropodomorpha). Soc Vertebr Paleontol Memoir 12:83–179

    Google Scholar 

  • Stein K, Csiki Z, Curry Rogers K, Weishampel DB, Redelstorff R, Carballido JL, Sander PM, Stanley SM (2010) Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). Proc Natl Acad Sci 107:9258–9263

    Article  Google Scholar 

  • Stevens KA, Parrish JM (1999) Neck posture and feeding habits of two jurassic sauropod dinosaurs. Science 284:798–800

    Article  Google Scholar 

  • Stevens KA, Ernst S, Marty D (2016) Uncertainty and ambiguity in the interpretation of sauropod trackways (Chapter 13). In: Falkingham PL, Marty D, Richter A (eds) Dinosaur tracks—The next steps. Indiana University Press, Bloomington, Indiana, USA, pp 227–243

    Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Taylor MP, Wedel MJ, Naish D (2009) Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontol Pol 54:213–220

    Article  Google Scholar 

  • Tsai HP, Holliday CM (2014) Articular soft tissue anatomy of the archosaur hip joint: structural homology and functional implications. J Morphol 276:601–630

    Article  Google Scholar 

  • Tütken T (2011) The diet of sauropod dinosaurs: implications of carbon isotope analysis on teeth, bones, and plants. In: Klein N, Remes K, Gee CT, Sander PM (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington, pp 57–82

    Google Scholar 

  • Upchurch GR Jr, Dilcher DL (1990) Cenomanian angiosperm leaf megafossils, Dakota formation, Rose Creek locality, Jefferson County, southeastern Nebraska. US Geol Surv Bull 1950:1–55

    Google Scholar 

  • Upchurch P, Barrett PM (2000) The evolution of sauropod feeding mechanisms. In: Sues HD (ed) Evolution of herbivory in terrestrial vertebrates. Cambridge University Press, Cambridge, pp 79–122

    Chapter  Google Scholar 

  • VanBuren CS, Bonnan M (2013) Forearm posture and mobility in quadrupedal dinosaurs. PLOS ONE 8:e74842

    Google Scholar 

  • Vargas-Peixoto D, Da-Rosa AAS, Franca MAG (2015) Functional and biomechanic aspects of the scapular girdle and forelimbs of Unaysaurus tolentinoi Leal et al., 2004 (Saurischia: Sauropodomorpha). J South Am Earth Sci 61:129–133

    Article  Google Scholar 

  • Wilhite R (2003) Biomechanical reconstruction of the appendicular skeleton in Three North American Jurassic Sauropods. Unpublished D. Phil, Thesis, Louisiana State University

    Google Scholar 

  • Wilson JA, Sereno PC (1998) Early evolution and higher-level phylogeny of sauropod dinosaurs. Soc Vertebr Paleontol Memoir 5:1–68

    Article  Google Scholar 

  • Wilson JA, Carrano MT (1999) Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25:252–267

    Article  Google Scholar 

  • Wilson JA, Pol D, Carvalho AB, Zaher H (2016) The skull of the titanosaur Tapuiasaurus macedoi (Dinosauria: Sauropoda), a basal titanosaur from the Lower Cretaceous of Brazil. Zool J Linn Soc 178:611–662

    Article  Google Scholar 

  • Wright JL (1999) Ichnological evidence for the use of the forelimb in iguanodontid locomotion. Spec Pap Palaeontol 60:209–219

    Google Scholar 

  • Yates AM, Kitching JW (2003) The earliest known sauropod dinosaur and the first steps towards sauropod locomotion. Proc R Soc Lond B 270:1753–1758

    Article  Google Scholar 

  • Yates AM, Bonnan MF, Neveling J, Chinsamy A, Blackbeard MG (2010) A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism. Proc R Soc Lond B 277:787–794

    Google Scholar 

  • Zaher H, Pol D, Carvalho AB, Nascimento PM, Riccomini C, Larson P, Juarez-Valieri R, Pires-Domingues R, da Silva Jr JN, de Almeida Campos D (2011) A complete skull of an early Cretaceous sauropod and the evolution of advanced titanosaurians. PLoS ONE 6:e16663

    Google Scholar 

  • Zhao Q, Benton MJ, Sullivan C, Sander PM, Xu X (2013) Histology and postural change during the growth of the ceratopsian dinosaur Psittacosaurus lujiatunensis. Nature Commun 4:2079

    Google Scholar 

Download references

Acknowledgements

We thank the following funding sources: Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-0504 and 2019-00456 to AO) and an ERC Horizon 2020 Advanced Investigator Grant (695517 to JRH). We would like to thank reviews by F. Pretto and S. Maidment, which greatly improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Otero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otero, A., Hutchinson, J.R. (2022). Body Size Evolution and Locomotion in Sauropodomorpha: What the South American Record Tells Us. In: Otero, A., Carballido, J.L., Pol, D. (eds) South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-95959-3_12

Download citation

Publish with us

Policies and ethics