Skip to main content

Modelling Energy Security: The Case of Dutch Urban Energy Communities

  • Conference paper
  • First Online:
Advances in Social Simulation

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Energy communities are gaining momentum in the context of the energy transition. Given the distributed and collective action nature of energy communities, energy security of these local energy systems is more than just security of supply and related to issues such as affordability and acceptability of energy to members of the community. We build an agent-based model of energy communities to explore their security challenges. The security dimensions we consider are availability, affordability, accessibility and acceptability, which are referred to as the 4As. The results confirmed that there is always a trade-off between all four dimensions and that although it is difficult to achieve a high energy security performance, it is feasible. Results also showed that among factors influencing energy security, the investment of the community plays the biggest role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 189.00
Price excludes VAT (USA)
Softcover Book
USD 249.99
Price excludes VAT (USA)
Hardcover Book
USD 249.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The model is available in CoMSES Net: https://www.comses.net/codebase-release/53329335-a5cc-48c3-bfe6-f19dad2f8694/

References

  1. Masson-Delmotte, V., Portner, H.O., Roberts, D.: IPCC Global warming of 1.5 C, no. 9. (2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf

  2. Kaundinya, D.P., Balachandra, P., Ravindranath, N.H.: Grid-connected versus stand-alone energy systems for decentralized power-A review of literature. Renew. Sustain. Energy Rev. 13(8), 2041–2050 (2009). https://doi.org/10.1016/j.rser.2009.02.002

    Article  Google Scholar 

  3. Van Der Schoor, T., Scholtens, B.: Power to the people: Local community initiatives and the transition to sustainable energy. Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2014.10.089

    Article  Google Scholar 

  4. Fouladvand, J., Mouter, N., Ghorbani, A., Herder, P.: Formation and Continuation of Thermal Energy Community Systems: An Explorative Agent-Based Model for the Netherlands. https://doi.org/10.3390/en13112829

  5. Dóci, G., Vasileiadou, E.: ‘Let’s do it ourselves’ Individual motivations for investing in renewables at community level. Renew. Sustain. Energy Rev. 49, 41–50 (2015). https://doi.org/10.1016/j.rser.2015.04.051

    Article  Google Scholar 

  6. Walker, G., Devine-Wright, P.: Community renewable energy: what should it mean? Energy Policy 36(2), 497–500 (2008). https://doi.org/10.1016/j.enpol.2007.10.019

    Article  Google Scholar 

  7. Dóci, G., Vasileiadou, E., Petersen, A.C.: Exploring the transition potential of renewable energy communities. Futures 66, 85–95 (2015). https://doi.org/10.1016/j.futures.2015.01.002

    Article  Google Scholar 

  8. Fulhu, M., Mohamed, M., Krumdieck, S.: Voluntary demand participation (VDP) for security of essential energy activities in remote communities with case study in Maldives, Energy Sustain. Dev. 49, 27–38 (2019). https://doi.org/10.1016/j.esd.2019.01.002

  9. Kruyt, B., van Vuuren, D.P., de Vries, H.J.M., Groenenberg, H.: Indicators for energy security. Energy Policy (2009). https://doi.org/10.1016/j.enpol.2009.02.006

    Article  Google Scholar 

  10. Sovacool, B.K.: Introduction: Defining, measuring, and exploring energy security, in The Routledge handbook of energy security, Routledge, pp. 19–60 (2010)

    Google Scholar 

  11. Ghorbani, A., Nascimento, L., Filatova, T.: Energy research & Social Science Growing community energy initiatives from the bottom up : simulating the role of behavioural attitudes and leadership in the Netherlands. Energy Res. Soc. Sci. 70, 101782 (2020), March. https://doi.org/10.1016/j.erss.2020.101782

  12. Busch, J., Roelich, K., Bale, C. S. E., Knoeri, C.: Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks. Energy Policy 100, 170–180 (2017), October 2016. https://doi.org/10.1016/j.enpol.2016.10.011

  13. Mittal, A., Krejci, C.C., Dorneich, M. C., Fickes, D.: An agent-based approach to modeling zero energy communities. Sol. Energy 191, 193–204 (2019), December 2018. https://doi.org/10.1016/j.solener.2019.08.040

  14. Tongsopit, S., Kittner, N., Chang, Y., Aksornkij, A., Wangjiraniran, W.: Energy security in ASEAN: a quantitative approach for sustainable energy policy. Energy Policy (2016). https://doi.org/10.1016/j.enpol.2015.11.019

    Article  Google Scholar 

  15. Reichl, J., Schmidthaler, M., Schneider, F.: The value of supply security: the costs of power outages to Austrian households, firms and the public sector ☆. Energy Econ. 36, 256–261 (2013). https://doi.org/10.1016/j.eneco.2012.08.044

    Article  Google Scholar 

  16. Ang, B.W., Choong, W.L., Ng, T.S.: Energy security: definitions, dimensions and indexes. Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2014.10.064

    Article  Google Scholar 

  17. Wang, Z., Perera, A.T.D.: Robust optimization of power grid with distributed generation and improved reliability. Energy Procedia 159, 400–405 (2019). https://doi.org/10.1016/j.egypro.2018.12.069

    Article  Google Scholar 

  18. Grimm, V. et al.: The ODD protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism. Jasss 23(2) (2020). https://doi.org/10.18564/jasss.4259

  19. Koirala, B.P., Araghi, Y., Kroesen, M., Ghorbani, A., Hakvoort, R.A., Herder, P.M.: Trust, awareness, and independence: insights from a socio-psychological factor analysis of citizen knowledge and participation in community energy systems. Energy Res. Soc. Sci. 38(January), 33–40 (2018). https://doi.org/10.1016/j.erss.2018.01.009

    Article  Google Scholar 

  20. Jung, M., Hwang, J.: Structural dynamics of innovation networks funded by the European Union in the context of systemic innovation of the renewable energy sector. Energy Policy 96, 471–490 (2016). https://doi.org/10.1016/j.enpol.2016.06.017

    Article  Google Scholar 

  21. Fouladvand, J., Rojas, M.A., Hoppe, T. and Ghorbani, A., 2022. Simulating thermal energy community formation: Institutional enablers outplaying technological choice. Appl. Energy 306 117897. https://doi.org/10.1016/j.apenergy.2021.117897

  22. Seyfang, G., Jin, J., Smith, A.: A thousand flowers blooming? an examination of community energy in the UK. Energy Policy 61, 977–989 (2013). https://doi.org/10.1016/j.enpol.2013.06.030

    Article  Google Scholar 

  23. Staffell, I., Brett, D., Brandon, N., Hawkes, A.: A review of domestic heat pumps. Energy Environ. Sci. 5(11), 9291–9306 (2012). https://doi.org/10.1039/c2ee22653g

    Article  Google Scholar 

  24. V. N. V. A. Report.: Fossil-free within one generation (2019). https://group.vattenfall.com/nl/siteassets/vattenfall-nl-site-assets/wie-we-zijn/corp-governance/annual-reports/vattenfall-nv-annual-report-2019.pdf

  25. Gerdes, J., Segers, R.: Fossiel energiegebruik en het rendement van elektriciteit in Nederland, September (2012). https://www.rvo.nl/sites/default/files/Notitie%20Energie-CO2%20effecten%20elektriciteit%20Sept%202012.pdf

  26. Solar PV cost update Department of Energy & Climate Change Solar PV cost update, May (2012). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/43083/5381-solar-pv-cost-update.pdf

  27. U. Kingdom: Heat Pump Implementation Scenarios until 2030 heat pump implementation scenarios until 2030 an analysis of the technology’s potential in the building. https://www.ehpa.org/fileadmin/red/03._Media/03.02_Studies_and_reports/Heat_Pump_Implementation_Scenarios.pdf

  28. Sleutjes, B., De Valk, H.A.G., Ooijevaar, J.: The measurement of ethnic segregation in the Netherlands: differences between administrative and individualized neighbourhoods. Eur. J. Popul. 34(2), 195–224 (2018). https://doi.org/10.1007/s10680-018-9479-z

    Article  Google Scholar 

  29. Average energy rates for consumers, p. 84672 (2021). https://opendata.cbs.nl/statline/?dl=3350E%20#/CBS/nl/dataset/84672NED/table

  30. Sandvall, A.F., Ahlgren, E.O., Ekvall, T.: Cost-efficiency of urban heating strategies—Modelling scale effects of low-energy building heat supply. Energy Strateg. Rev. 18, 212–223 (2017). https://doi.org/10.1016/j.esr.2017.10.003

    Article  Google Scholar 

  31. Ranjan, A., Hughes, L.: Energy security and the diversity of energy flows in an energy system. Energy 73, 137–144 (2014). https://doi.org/10.1016/j.energy.2014.05.108

    Article  Google Scholar 

  32. Ang, B.W., Choong, W.L., Ng, T.S.: A framework for evaluating Singapore’s energy security. Appl. Energy 148, 314–325 (2015). https://doi.org/10.1016/j.apenergy.2015.03.088

    Article  Google Scholar 

  33. Radovanović, M., Filipović, S., Pavlović, D.: Energy security measurement – A sustainable approach. Renew. Sustain. Energy Rev. 68, 1020–1032 (2017). https://doi.org/10.1016/j.rser.2016.02.010

    Article  Google Scholar 

  34. Londo, M., Matton, R., Usmani, O., Van Klaveren, M., Tigchelaar, C., Brunsting, S.: Alternatives for current net metering policy for solar PV in the Netherlands: a comparison of impacts on business case and purchasing behaviour of private homeowners, and on governmental costs. Renew. Energy 147, 903–915 (2020). https://doi.org/10.1016/j.renene.2019.09.062

    Article  Google Scholar 

  35. Olonscheck, M., Walther, C., Lüdeke, M., Kropp, J.P.: Feasibility of energy reduction targets under climate change: the case of the residential heating energy sector of the Netherlands. Energy (2015). https://doi.org/10.1016/j.energy.2015.07.080

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Netherlands Organization for Scientific Research for their financial support [NWO Responsible Innovation grant – 313-99-324]. In addition, the support of Paulien Herder and Niek Mouter for this study was highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javanshir Fouladvand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fouladvand, J., Verkerk, D., Nikolic, I., Ghorbani, A. (2022). Modelling Energy Security: The Case of Dutch Urban Energy Communities. In: Czupryna, M., Kamiński, B. (eds) Advances in Social Simulation. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-92843-8_30

Download citation

Publish with us

Policies and ethics