Skip to main content

The Microbiome-Gut-Brain Axis: A New Window to View the Impact of Prenatal Stress on Early Neurodevelopment

  • Chapter
  • First Online:
Prenatal Stress and Child Development

Abstract

Prenatal maternal stress that results from general and pregnancy-specific forms of anxiety and depression, ranging in severity from everyday hassles to experiences of traumatic events, adversely impacts neurodevelopment and increases risks for psychopathology in the offspring. To date, the focus of investigations has been on the assessment of factors that alter fetal brain development via transplacental mechanisms. Attention has to date focused on developmental outcomes associated with transplacental transfer of maternal cortisol and psychotropic medications used to treat stress-related disorders; however, behavioral outcomes across childhood vary and findings remain conflicting and even contradictory. Emerging attention is now focusing on the role of the gastrointestinal microbiome as a key extra-placental stress transfer mechanism during pregnancy. In this chapter, we evaluate empirical evidence for the role of the microbiome-gut-brain axis in a non-transplacental prenatal stress mechanism and links with early brain development. We explore, in both human and animal studies, potential sensitivities for several mechanisms noted to mediate the stress stimuli’s neurodevelopmental effects, including hypothalamic-pituitary-adrenal (HPA) axis activity; altered serotonin signaling; changes in placental function; and immune system dysregulation. Special attention is paid to emerging evidence that the gut microbiome may play a consolidating role in shaping these key stress-responsive systems. It is well established that the gut microbiome utilizes neuroendocrine, neuroimmune, and autonomic nervous system pathways to mediate changes in brain function and behavior. Disturbances in the composition of gut microorganisms are a hallmark feature of many neurodevelopmental disorders and such disturbances in the gestational microbiome associated with prenatal stress that can be transferred from mothers to her offspring has been documented, which raised novel questions about whether these changes are associated with early brain development. Fresh approaches are called for refocus on tracking molecular and microbial markers reflective of the underlying etiologies throughout gestation toward identifying biological signatures that correspond to critical periods of vulnerability. Moving forward, targeted manipulation of the gut microbiome via dietary and bacterial-based interventions may prove decisive in conferring resilience to the detrimental consequences of prenatal stress during these critical neurodevelopmental windows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aagaard, K., Riehle, K., Ma, J., Segata, N., Mistretta, T. A., Coarfa, C., et al. (2012). A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One, 7(6), e36466. https://doi.org/10.1371/journal.pone.0036466.

    Article  Google Scholar 

  • Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., & Versalovic, J. (2014). The placenta harbors a unique microbiome. Science Translational Medicine, 6(237), 237ra65–237ra65. http://stm.sciencemag.org/content/6/237/237ra65.abstract

  • Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., et al. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), 1885–1895. doi:S0306-4530(12)00129-1 [pii]; 10.1016/j.psyneuen.2012.03.024 [doi].

    Google Scholar 

  • Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915–1920. doi:307/5717/1915 [pii];10.1126/science.1104816 [doi].

    Google Scholar 

  • Backhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host & Microbe, 17(6), 852. https://doi.org/10.1016/j.chom.2015.05.012.

    Article  Google Scholar 

  • Bagga, D., Reichert, J. L., Koschutnig, K., Aigner, C. S., Holzer, P., Koskinen, K., et al. (2018). Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes, 9(6), 486–496. https://doi.org/10.1080/19490976.2018.1460015.

    Article  Google Scholar 

  • Bagga, D., Aigner, C. S., Reichert, J. L., Cecchetto, C., Fischmeister, F. P. S., Holzer, P., et al. (2019). Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. European Journal of Nutrition, 58(5), 1821–1827. https://doi.org/10.1007/s00394-018-1732-z.

    Article  Google Scholar 

  • Bailey, M. T., Lubach, G. R., & Coe, C. L. (2004). Prenatal stress alters bacterial colonization of the gut in infant monkeys. Journal of Pediatric Gastroenterology and Nutrition, 38(4), 414–421. https://doi.org/10.1097/00005176-200404000-00009.

    Article  Google Scholar 

  • Barker, D. J. (1998). In utero programming of chronic disease. Clinical Science, 95, 115–128.

    Article  Google Scholar 

  • Barker, D. J. (2000). In utero programming of cardiovascular disease. Theriogenology, 53(2), 555–574. https://doi.org/10.1016/s0093-691x(99)00258-7.

    Article  Google Scholar 

  • Beijers, R., Buitelaar, J. K., & de Weerth C. (2014). Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. Eur. Child Adolesc. Psychiatry, 23(10), 943–956. doi:10.1007/s00787-014-0566-3 [doi].

    Google Scholar 

  • Beversdorf, D. Q., Manning, S. E., Hillier, A., Anderson, S. L., Nordgren, R. E., Walters, S. E., et al. (2005). Timing of prenatal stressors and autism. Journal of Autism and Developmental Disorders, 35(4), 471–478. https://doi.org/10.1007/s10803-005-5037-8.

    Article  Google Scholar 

  • Bhattarai, Y., Schmidt, B. A., Linden, D. R., Larson, E. D., Grover, M., Beyder, A., et al. (2017). Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production. American Journal of PhysiologyGastrointestinal and Liver Physiology, 313(1), G80–G87. doi:ajpgi.00448.2016 [pii];10.1152/ajpgi.00448.2016 [doi].

    Google Scholar 

  • Biasucci, G., Rubini, M., Riboni, S., Morelli, L., Bessi, E., & Retetangos, C. (2010). Mode of delivery affects the bacterial community in the newborn gut. Early Human Development, 86(Suppl 1), 13–15. https://doi.org/10.1016/j.earlhumdev.2010.01.004.

    Article  Google Scholar 

  • Bilbo, S. D., Block, C. L., Bolton, J. L., Hanamsagar, R., & Tran, P. K. (2018). Beyond infection – Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Experimental Neurology, 299(Pt A), 241–251. https://doi.org/10.1016/j.expneurol.2017.07.002.

    Article  Google Scholar 

  • Borre, Y. E., O’Keeffe, G. W., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2014). Microbiota and neurodevelopmental windows: implications for brain disorders. Trends in Molecular Medicine, 20(9), 509–518. doi:S1471-4914(14)00081-1 [pii];10.1016/j.molmed.2014.05.002 [doi].

    Article  Google Scholar 

  • Boulanger-Bertolus, J., Pancaro, C., & Mashour, G. A. (2018). Increasing role of maternal immune activation in neurodevelopmental disorders. Frontiers in Behavioral Neuroscience, 12, 230. https://doi.org/10.3389/fnbeh.2018.00230.

    Article  Google Scholar 

  • Brown, A. S., & Meyer, U. (2018). Maternal immune activation and neuropsychiatric illness: A translational research perspective. The American Journal of Psychiatry, 175(11), 1073–1083. https://doi.org/10.1176/appi.ajp.2018.17121311.

    Article  Google Scholar 

  • Brummelte, S., Glanaghy, E. M., Bonnin, A., & Oberlander, T. F. (2017). Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience, 342, 212–231. doi:S0306-4522(16)00177-9 [pii];10.1016/j.neuroscience.2016.02.037 [doi].

    Article  Google Scholar 

  • Bushman, F. D. (2019). De-discovery of the placenta microbiome. American Journal of Obstetrics and Gynecology, 220(3), 213–214. https://doi.org/10.1016/j.ajog.2018.11.1093.

    Article  Google Scholar 

  • Calarge, C. (2016). Effects of major depression and SSRIs on the gut microbiota. Neuropsychopharmacology, 41, s1–s115.

    Google Scholar 

  • Callaghan, B. L., Fields, A., Gee, D. G., Gabard-Durnam, L., Caldera, C., Humphreys, K. L., et al. (2019). Mind and gut: Associations between mood and gastrointestinal distress in children exposed to adversity. Development and Psychopathology, 1–20. https://doi.org/10.1017/s0954579419000087.

  • Caputi, V., & Giron, M. C. (2018). microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. International Journal of Molecular Sciences, 19(6), 1689. https://doi.org/10.3390/ijms19061689.

    Article  Google Scholar 

  • Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203–209. https://www.ncbi.nlm.nih.gov/pubmed/25830558.

    Google Scholar 

  • Carlson, A. L., Xia, K., Azcarate-Peril, M. A., Goldman, B. D., Ahn, M., Styner, M. A., et al. (2018). Infant gut microbiome associated with cognitive development. Biological Psychiatry, 83(2), 148–159. https://doi.org/10.1016/j.biopsych.2017.06.021.

    Article  Google Scholar 

  • Charil, A., Laplante, D. P., Vaillancourt, C., & King, S. (2010). Prenatal stress and brain development. Brain Research Reviews, 65(1), 56–79. https://doi.org/10.1016/j.brainresrev.2010.06.002.

    Article  Google Scholar 

  • Chen, H. J., & Gur, T. L. (2019). Intrauterine microbiota: Missing, or the missing link? Trends in Neurosciences, 42(6), 402–413. https://doi.org/10.1016/j.tins.2019.03.008.

    Article  Google Scholar 

  • Choi, G. B., Yim, Y. S., Wong, H., Kim, S., Kim, H., Kim, S. V., et al. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351(6276), 933–939. https://doi.org/10.1126/science.aad0314.

    Article  Google Scholar 

  • Claesson, M. J., Clooney, A. G., & O’Toole, P. W. (2017). A clinician’s guide to microbiome analysis. Nature Reviews. Gastroenterology & Hepatology, 14(10), 585–595. https://doi.org/10.1038/nrgastro.2017.97.

    Article  Google Scholar 

  • Clarke, M. B., Hughes, D. T., Zhu, C., Boedeker, E. C., & Sperandio, V. (2006). The QseC sensor kinase: A bacterial adrenergic receptor. Proceedings of the National Academy of Sciences, 103(27), 10420–10425. https://doi.org/10.1073/pnas.0604343103.

    Article  Google Scholar 

  • Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R. D., Shanahan, F., et al. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry, 18(6), 666–673. doi:mp201277 [pii];10.1038/mp.2012.77 [doi].

    Google Scholar 

  • Clarke, G., O’Mahony, S. M., Dinan, T. G., & Cryan, J. F. (2014). Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatrica, 103(8), 812–819. https://doi.org/10.1111/apa.12674.

    Article  Google Scholar 

  • Codagnone, M. G., Spichak, S., O’Mahony, S. M., O’Leary, O. F., Clarke, G., Stanton, C., et al. (2019a). Programming Bugs: Microbiota and the developmental origins of brain health and disease. Biological Psychiatry, 85(2), 150–163. https://doi.org/10.1016/j.biopsych.2018.06.014.

    Article  Google Scholar 

  • Codagnone, M. G., Stanton, C., O’Mahony, S. M., Dinan, T. G., & Cryan, J. F. (2019b). Microbiota and neurodevelopmental trajectories: Role of maternal and early-life nutrition. Annals of Nutrition and Metabolism, 74(Suppl 2), 16–27. https://doi.org/10.1159/000499144.

    Article  Google Scholar 

  • Collado, M. C., Rautava, S., Aakko, J., Isolauri, E., & Salminen, S. (2016). Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Reports, 6, 23129. https://doi.org/10.1038/srep23129.

    Article  Google Scholar 

  • Coulthard, L. G., Hawksworth, O. A., & Woodruff, T. M. (2018). Complement: The emerging architect of the developing brain. Trends in Neurosciences, 41(6), 373–384. https://doi.org/10.1016/j.tins.2018.03.009.

    Article  Google Scholar 

  • Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13(10), 701–712. doi:nrn3346 [pii];10.1038/nrn3346 [doi].

    Article  Google Scholar 

  • Cryan, J. F., & Dinan, T. G. (2019). Talking about a microbiome revolution. Nature Microbiology, 4(4), 552–553. https://doi.org/10.1038/s41564-019-0422-9.

    Article  Google Scholar 

  • Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M., et al. (2019). The microbiota-gut-brain axis. Physiological Reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018.

    Article  Google Scholar 

  • Cussotto, S., Clarke, G., Dinan, T. G., & Cryan, J. F. (2019a). Psychotropics and the Microbiome: a Chamber of Secrets… (journal article). Psychopharmacology, 236(5), 1411–1432. https://doi.org/10.1007/s00213-019-5185-8.

    Article  Google Scholar 

  • Cussotto, S., Strain, C. R., Fouhy, F., Strain, R. G., Peterson, V. L., Clarke, G., et al. (2019b). Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology, 236(5), 1671–1685. https://doi.org/10.1007/s00213-018-5006-5.

    Article  Google Scholar 

  • Davey, K. J., O’Mahony, S. M., Schellekens, H., O’Sullivan, O., Bienenstock, J., Cotter, P. D., et al. (2012). Gender-dependent consequences of chronic olanzapine in the rat: Effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl), 221(1), 155–169. https://doi.org/10.1007/s00213-011-2555-2.

    Article  Google Scholar 

  • Davey, K. J., Cotter, P. D., O’Sullivan, O., Crispie, F., Dinan, T. G., Cryan, J. F., et al. (2013). Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Translational Psychiatry, 3, e309. doi:tp201383 [pii];10.1038/tp.2013.83 [doi].

    Article  Google Scholar 

  • Dawson, S. L., Craig, J. M., Clarke, G., Mohebbi, M., Dawson, P., Tang, M. L., et al. (2019). Targeting the infant gut microbiota through a perinatal educational dietary intervention: Protocol for a randomized controlled trial. JMIR Research Protocols, 8(10), e14771. https://doi.org/10.2196/14771.

    Article  Google Scholar 

  • De Palma, G., Collins, S. M., & Bercik, P. (2014). The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes, 5(3), 419–429. doi:29417 [pii];10.4161/gmic.29417 [doi].

    Article  Google Scholar 

  • Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3047–3052. https://doi.org/10.1073/pnas.1010529108.

    Article  Google Scholar 

  • Dinan, T. G., & Cryan, J. F. (2017a). Brain-gut-microbiota axis and mental health. Psychosomatic Medicine. doi:10.1097/PSY.0000000000000519 [doi].

    Google Scholar 

  • Dinan, T. G., & Cryan, J. F. (2017b). Brain–gut–microbiota axis — mood, metabolism and behaviour. Nature Reviews Gastroenterology & Hepatology, 14, 69. https://doi.org/10.1038/nrgastro.2016.200.

    Article  Google Scholar 

  • Dinan, T. G., & Cryan, J. F. (2017c). Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. Journal of Physiology, 595(2), 489–503. https://doi.org/10.1113/JP273106.

    Article  Google Scholar 

  • Dinan, T. G., & Cryan, J. F. (2017d). The microbiome-gut-brain axis in health and disease. Gastroenterology Clinics of North America, 46(1), 77–89. doi:S0889-8553(16)30082-6 [pii];10.1016/j.gtc.2016.09.007 [doi].

    Google Scholar 

  • DiPietro, J. A., Novak, M. F., Costigan, K. A., Atella, L. D., & Reusing, S. P. (2006). Maternal psychological distress during pregnancy in relation to child development at age two. Child Development, 77(3), 573–587. https://doi.org/10.1111/j.1467-8624.2006.00891.x.

    Article  Google Scholar 

  • Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 11971–11975. https://doi.org/10.1073/pnas.1002601107.

    Article  Google Scholar 

  • Duranti, S., Lugli, G. A., Mancabelli, L., Armanini, F., Turroni, F., James, K., et al. (2017). Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome, 5(1), 66. https://doi.org/10.1186/s40168-017-0282-6.

    Article  Google Scholar 

  • Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., et al. (2005). Diversity of the human intestinal microbial flora. Science (New York, N.Y.), 308(5728), 1635–1638. https://doi.org/10.1126/science.1110591.

    Article  Google Scholar 

  • Estanislau, C., & Morato, S. (2005). Prenatal stress produces more behavioral alterations than maternal separation in the elevated plus-maze and in the elevated T-maze. Behavioural Brain Research, 163(1), 70–77. https://doi.org/10.1016/j.bbr.2005.04.003.

    Article  Google Scholar 

  • Estes, M. L., & McAllister, A. K. (2016). Maternal immune activation: Implications for neuropsychiatric disorders. Science, 353(6301), 772–777. https://doi.org/10.1126/science.aag3194.

    Article  Google Scholar 

  • Fattorusso, A., Di Genova, L., Dell’Isola, G. B., Mencaroni, E., & Esposito, S. (2019). Autism spectrum disorders and the gut microbiota. Nutrients, 11(3). https://doi.org/10.3390/nu11030521.

  • Felice, V. D., & O’Mahony, S. M. (2017). The microbiome and disorders of the central nervous system. Pharmacology, Biochemistry, and Behavior, 160(1), –13. doi:S0091-3057(17)30024-2 [pii];10.1016/j.pbb.2017.06.016 [doi].

    Google Scholar 

  • Fernandez-Real, J. M., Serino, M., Blasco, G., Puig, J., Daunis-i-Estadella, J., Ricart, W., et al. (2015). Gut microbiota interacts with brain microstructure and function. The Journal of Clinical Endocrinology and Metabolism, 100(12), 4505–4513. https://doi.org/10.1210/jc.2015-3076.

    Article  Google Scholar 

  • Ferretti, P., Pasolli, E., Tett, A., Asnicar, F., Gorfer, V., Fedi, S., et al. (2018). Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host & Microbe, 24(1), 133–145. e5. https://doi.org/10.1016/j.chom.2018.06.005.

    Article  Google Scholar 

  • Fouhy, F., Watkins, C., Hill, C. J., O’Shea, C. A., Nagle, B., Dempsey, E. M., et al. (2019). Perinatal factors affect the gut microbiota up to four years after birth. Nature Communications, 10(1), 1517. https://doi.org/10.1038/s41467-019-09252-4.

    Article  Google Scholar 

  • Gao, W., Salzwedel, A. P., Carlson, A. L., Xia, K., Azcarate-Peril, M. A., Styner, M. A., et al. (2019). Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala (journal article). Psychopharmacology, 236(5), 1641–1651. https://doi.org/10.1007/s00213-018-5161-8.

    Article  Google Scholar 

  • Gareau, M. G., Jury, J., MacQueen, G., Sherman, P. M., & Perdue, M. H. (2007). Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut, 56(11), 1522–1528. doi:gut.2006.117176 [pii];10.1136/gut.2006.117176 [doi].

    Google Scholar 

  • Gartstein, M. A., Erickson, N. L., Cooijmans, K. H. M., Hancock, G. R., Zijlmans, M. A. C., & de Weerth, C. (2020). Is prenatal maternal distress context-dependent? Comparing United States and the Netherlands. Journal of Affective Disorders, 260, 710–715. https://doi.org/10.1016/j.jad.2019.09.048.

    Article  Google Scholar 

  • Gaspar, P., Cases, O., & Maroteaux, L. (2003). The developmental role of serotonin: news from mouse molecular genetics. Nature Reviews Neuroscience, 4(12), 1002–1012. http://www.ncbi.nlm.nih.gov/pubmed/14618156.

    Article  Google Scholar 

  • Gaykema, R. P., Goehler, L. E., & Lyte, M. (2004). Brain response to cecal infection with Campylobacter jejuni: analysis with Fos immunohistochemistry. BrainBehavior, and Immunity, 18(3), 238–245. doi:10.1016/j.bbi.2003.08.002 [doi];S0889159103001375. [pii].

    Google Scholar 

  • Glover, V. (2015). Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Advances in Neurobiology, 10, 269–283. https://doi.org/10.1007/978-1-4939-1372-5_13.

    Article  Google Scholar 

  • Glover, V., O’Donnell, K. J., O’Connor, T. G., & Fisher, J. (2018). Prenatal maternal stress, fetal programming, and mechanisms underlying later psychopathology-A global perspective. Development and Psychopathology, 30(3), 843–854. https://doi.org/10.1017/S095457941800038X.

    Article  Google Scholar 

  • Golubeva, A. V., Crampton, S., Desbonnet, L., Edge, D., O’Sullivan, O., Lomasney, K. W., et al. (2015). Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 60, 58–74. doi:S0306-4530(15)00206-1 [pii];10.1016/j.psyneuen.2015.06.002 [doi].

    Google Scholar 

  • Golubeva A.V., B., T., Cherry, P., Fouhy, F,. Stanton, C., Dinan, T.G, Charlier, T.D., Oberlander, T.F, Cryan J.F., & Pawluski, J.L. (2018) Managing perinatal depression with fluoxetine: effect on maternal and neonatal microbiota. 19th Meeting of International Society for Serotonin Research. Cork, Ireland.

    Google Scholar 

  • Goodnick, P. J., & Goldstein, B. J. (1998). Selective serotonin reuptake inhibitors in affective disorders--I. Basic pharmacology. Journal of Psychopharmacology. (Oxf), 12(3 Suppl B), S5-20. http://www.ncbi.nlm.nih.gov/pubmed/9808077

  • Gur, T. L., Shay, L., Palkar, A. V., Fisher, S., Varaljay, V. A., Dowd, S., & Bailey, M. T. (2017). Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain, Behavior, and Immunity, 64, 50–58.

    Article  Google Scholar 

  • Gur, T. L., Palkar, A. V., Rajasekera, T., Allen, J., Niraula, A., Godbout, J., & Bailey, M. T. (2019). Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behavioural Brain Research, 359, 886–894. https://doi.org/10.1016/j.bbr.2018.06.025.

    Article  Google Scholar 

  • Hanley, G. E., Brain, U., & Oberlander, T. F. (2015). Prenatal exposure to serotonin reuptake inhibitor antidepressants and childhood behavior. Pediatric Research, 78(2), 174–180. doi:pr201577 [pii];10.1038/pr.2015.77 [doi].

    Google Scholar 

  • Hartman, S., Sayler, K., & Belsky, J. (2019). Prenatal stress enhances postnatal plasticity: The role of microbiota. Developmental Psychobiology, 61(5), 729–738. https://doi.org/10.1002/dev.21816.

    Article  Google Scholar 

  • Hechler, C., Borewicz, K., Beijers, R., Saccenti, E., Riksen-Walraven, M., Smidt, H., et al. (2019). Association between psychosocial stress and fecal microbiota in pregnant women. Scientific Reports, 9(1), 4463. https://doi.org/10.1038/s41598-019-40434-8.

    Article  Google Scholar 

  • Howland, M. A., Sandman, C. A., & Glynn, L. M. (2017). Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Review of Endocrinology and Metabolism, 12(5), 321–339. https://doi.org/10.1080/17446651.2017.1356222.

    Article  Google Scholar 

  • Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/j.cell.2013.11.024.

    Article  Google Scholar 

  • Hu, J. (2019). Microbiota of newborn meconium is associated with maternal anxiety experienced during pregnancy. Developmental Psychobiology, 61(5), 640–649. https://doi.org/10.1002/dev.21837.

    Article  Google Scholar 

  • Jackson, M. A., Verdi, S., Maxan, M. E., Shin, C. M., Zierer, J., Bowyer, R. C. E., et al. (2018). Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nature Communications, 9(1), 2655. https://doi.org/10.1038/s41467-018-05184-7.

    Article  Google Scholar 

  • Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29), 8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787.

    Article  Google Scholar 

  • Jasarevic, E., Howerton, C. L., Howard, C. D., & Bale, T. L. (2015a). Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology, 156(9), 3265–3276. https://doi.org/10.1210/en.2015-1177.

    Article  Google Scholar 

  • Jasarevic, E., Rodgers, A. B., & Bale, T. L. (2015b). A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress, 1, 81–88. https://doi.org/10.1016/j.ynstr.2014.10.005.

    Article  Google Scholar 

  • Jasarevic, E., Howard, C. D., Morrison, K., Misic, A., Weinkopff, T., Scott, P., et al. (2018). The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nature Neuroscience, 21(8), 1061–1071. https://doi.org/10.1038/s41593-018-0182-5.

    Article  Google Scholar 

  • Jiménez, E., Marín, M. L., Martín, R., Odriozola, J. M., Olivares, M., Xaus, J., et al. (2008). Is meconium from healthy newborns actually sterile? Research in Microbiology, 159(3), 187–193. https://doi.org/10.1016/j.resmic.2007.12.007.

  • Kalayci, S., Demirci, S., & Sahin, F. (2015). Antimicrobial Properties of Various Psychotropic Drugs Against Broad Range Microorganisms. Not in File.

    Book  Google Scholar 

  • Kang, L. J., Koleva, P. T., Field, C. J., Giesbrecht, G. F., Wine, E., Becker, A. B., et al. (2018). Maternal depressive symptoms linked to reduced fecal Immunoglobulin A concentrations in infants. Brain, Behavior, and Immunity, 68, 123–131. https://doi.org/10.1016/j.bbi.2017.10.007.

    Article  Google Scholar 

  • Kelly, J. R., Borre, Y., O’Brien, C., Patterson, E., El, A. S., Deane, J., et al. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. doi:S0022-3956(16)30157-1 [pii];10.1016/j.jpsychires.2016.07.019 [doi].

    Google Scholar 

  • Kelsey, C., Dreisbach, C., Alhusen, J., & Grossmann, T. (2019). A primer on investigating the role of the microbiome in brain and cognitive development. Developmental Psychobiology, 61(3), 341–349. https://doi.org/10.1002/dev.21778.

    Article  Google Scholar 

  • Khashan, A. S., Abel, K. M., McNamee, R., Pedersen, M. G., Webb, R. T., Baker, P. N., et al. (2008). Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Archives of General Psychiatry, 65(2), 146–152. https://doi.org/10.1001/archgenpsychiatry.2007.20.

    Article  Google Scholar 

  • Kinney, D. K., Miller, A. M., Crowley, D. J., Huang, E., & Gerber, E. (2008). Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. Journal of Autism and Developmental Disorders, 38(3), 481–488. https://doi.org/10.1007/s10803-007-0414-0.

    Article  Google Scholar 

  • Knecht, L. D., O’Connor, G., Mittal, R., Liu, X. Z., Daftarian, P., Deo, S. K., et al. (2016). Serotonin Activates Bacterial Quorum Sensing and Enhances the Virulence of Pseudomonas aeruginosa in the Host. EBioMedicine, 9, 161-169. doi:doi:10.1016/j.ebiom.2016.05.037.

    Google Scholar 

  • Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., et al. (2011a). Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4578–4585. https://doi.org/10.1073/pnas.1000081107.

    Article  Google Scholar 

  • Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., et al. (2011b). Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 1(Suppl 1), 4578–4585. https://doi.org/10.1073/pnas.1000081107.

    Article  Google Scholar 

  • Kohn, N., Szopinska-Tokov, J., Papalini, S., Llera, A., Arias-Vasquez, A., & Aarts, E. (2019). ‘Linking variability in gut microbiome and large scale brain network connectivity’ Organisation for Human Brain Mapping. Italy: Rome.

    Google Scholar 

  • Koren, O., Goodrich, J. K., Cullender, T. C., Spor, A., Laitinen, K., Backhed, H. K., et al. (2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 150(3), 470–480. https://doi.org/10.1016/j.cell.2012.07.008.

    Article  Google Scholar 

  • Korpela, K., Costea, P., Coelho, L. P., Kandels-Lewis, S., Willemsen, G., Boomsma, D. I., et al. (2018). Selective maternal seeding and environment shape the human gut microbiome. Genome Research, 28(4), 561–568. https://doi.org/10.1101/gr.233940.117.

    Article  Google Scholar 

  • Labus, J. S., Hollister, E. B., Jacobs, J., Kirbach, K., Oezguen, N., Gupta, A., et al. (2017). Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome, 5(1), 49. doi:10.1186/s40168-017-0260-z [doi];10.1186/s40168-017-0260-z. [pii].

    Google Scholar 

  • Labus, J. S., Osadchiy, V., Hsiao, E. Y., Tap, J., Derrien, M., Gupta, A., et al. (2019). Evidence for an association of gut microbial Clostridia with brain functional connectivity and gastrointestinal sensorimotor function in patients with irritable bowel syndrome, based on tripartite network analysis. Microbiome, 7(1), 45. https://doi.org/10.1186/s40168-019-0656-z.

    Article  Google Scholar 

  • Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M., & Koenig, J. I. (2007). Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Research, 1156, 152–167. https://doi.org/10.1016/j.brainres.2007.04.042.

    Article  Google Scholar 

  • Leiby, J. S., McCormick, K., Sherrill-Mix, S., Clarke, E. L., Kessler, L. R., Taylor, L. J., et al. (2018). Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome, 6(1), 196. https://doi.org/10.1186/s40168-018-0575-4.

    Article  Google Scholar 

  • Li, J., Olsen, J., Vestergaard, M., Obel, C., Baker, J. L., & Sorensen, T. I. (2010). Prenatal stress exposure related to maternal bereavement and risk of childhood overweight. PLoS One, 5(7), e11896. https://doi.org/10.1371/journal.pone.0011896.

    Article  Google Scholar 

  • Liu, F., Horton-Sparks, K., Hull, V., Li, R. W., & Martínez-Cerdeño, V. (2018). The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism. Molecular Autism, 9(1). https://doi.org/10.1186/s13229-018-0251-3.

  • Liu, P., Peng, G., Zhang, N., Wang, B., & Luo, B. (2019). Crosstalk Between the Gut Microbiota and the Brain: An Update on Neuroimaging Findings. Frontiers in Neurology, 10, 883. https://doi.org/10.3389/fneur.2019.00883.

    Article  Google Scholar 

  • Loughman, A., Ponsonby, A. L., O’Hely, M., Symeonides, C., Collier, F., Tang, M. L. K., et al. (2020). Gut microbiota composition during infancy and subsequent behavioural outcomes. eBioMedicine, 52. https://doi.org/10.1016/j.ebiom.2020.102640.

  • Lukic, I., Getselter, D., Koren, O., & Elliott, E. (2019). Role of Tryptophan in Microbiota-Induced Depressive-Like Behavior: Evidence From Tryptophan Depletion Study. Frontiers in Behavioral Neuroscience, 13, 123. https://doi.org/10.3389/fnbeh.2019.00123.

    Article  Google Scholar 

  • Lukić, I., Getselter, D., Koren, O., & Elliott, E. (2019a). Role of Tryptophan in Microbiota-Induced Depressive-Like Behavior: Evidence From Tryptophan Depletion Study. Frontiers in Behavioral Neuroscience, 13, 123–123. https://doi.org/10.3389/fnbeh.2019.00123.

    Article  Google Scholar 

  • Lukić, I., Getselter, D., Ziv, O., Oron, O., Reuveni, E., Koren, O., et al. (2019b). Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Translational Psychiatry, 9(1), 133. https://doi.org/10.1038/s41398-019-0466-x.

    Article  Google Scholar 

  • Lynch, S. V., & Pedersen, O. (2016). The Human Intestinal Microbiome in Health and Disease. The New England Journal of Medicine, 375(24), 2369–2379. https://doi.org/10.1056/NEJMra1600266.

    Article  Google Scholar 

  • Lyte, M. (2011). Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays, 33(8), 574-581. doi:10.1002/bies.201100024 [doi].

    Google Scholar 

  • Lyte, M., Daniels, M., & K., & Schmitz-Esser, S. (2019). Fluoxetine-induced alteration of murine gut microbial community structure: Evidence for a microbial endocrinology-based mechanism of action responsible for fluoxetine-induced side effects. Peer J, 7, e6199. https://doi.org/10.7717/peerj.6199.

    Article  Google Scholar 

  • Macedo, D., Filho, A. J., Soares de Sousa, C. N., Quevedo, J., Barichello, T., Junior, H. V., et al. (2017). Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord, 208, 22-32. doi:S0165-0327(16)30881-3 [pii];10.1016/j.jad.2016.09.012 [doi].

    Google Scholar 

  • Mayer, E. A. (2011). Gut feelings: the emerging biology of gut-brain communication. Nat Rev. Neurosci, 12(8), 453-466. doi:nrn3071 [pii];10.1038/nrn3071 [doi].

    Google Scholar 

  • Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F., & Tillisch, K. (2014). Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci, 34(46), 15490–15496. doi:34/46/15490 [pii];10.1523/JNEUROSCI.3299-14.2014 [doi].

    Google Scholar 

  • McDonald, B., & McCoy, K. D. (2019). Maternal microbiota in pregnancy and early life. Science, 365(6457), 984. https://doi.org/10.1126/science.aay0618.

    Article  Google Scholar 

  • McFall-Ngai, M., Hadfield, M. G., Bosch, T. C., Carey, H. V., Domazet-Loso, T., Douglas, A. E., et al. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3229–3236. https://doi.org/10.1073/pnas.1218525110.

    Article  Google Scholar 

  • Morgan, A. P., Crowley, J. J., Nonneman, R. J., Quackenbush, C. R., Miller, C. N., Ryan, A. K., et al. (2014). The antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse. PLoS. ONE, 9(12), e115225. doi:10.1371/journal.pone.0115225 [doi];PONE-D-14-39656. [pii].

    Google Scholar 

  • Mudd, A. T., Berding, K., Wang, M., Donovan, S. M., & Dilger, R. N. (2017). Serum cortisol mediates the relationship between fecal Ruminococcus and brain N-acetylaspartate in the young pig. Gut Microbes, 8(6), 589–600. https://doi.org/10.1080/19490976.2017.1353849.

    Article  Google Scholar 

  • Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., & Dominguez-Bello, M. G. (2015). The infant microbiome development: mom matters. Trends in Molecular Medicine, 21(2), 109–117. https://doi.org/10.1016/j.molmed.2014.12.002.

    Article  Google Scholar 

  • Munoz-Bellido, J. L., Munoz-Criado, S., & Garcia-Rodriguez, J. A. (2000). Antimicrobial activity of psychotropic drugs: selective serotonin reuptake inhibitors. International Journal of Antimicrobial Agents, 14(3), 177–180. doi:S0924-8579(99)00154-5 [pii].

    Article  Google Scholar 

  • Nasioudis, D., Forney, L. J., Schneider, G. M., Gliniewicz, K., France, M., Boester, A., et al. (2017). Influence of Pregnancy History on the Vaginal Microbiome of Pregnant Women in their First Trimester. Sci. Rep, 7(1), 10201. doi:10.1038/s41598-017-09857-z [doi];10.1038/s41598-017-09857-z. [pii].

    Google Scholar 

  • Niesler, B., & Rappold, G. A. (2020). Emerging evidence for gene mutations driving both brain and gut dysfunction in autism spectrum disorder. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-0778-5.

  • Nuriel-Ohayon, M., Neuman, H., & Koren, O. (2016). Microbial Changes during Pregnancy, Birth, and Infancy. Frontiers in Microbiology, 7, 1031. https://doi.org/10.3389/fmicb.2016.01031.

    Article  Google Scholar 

  • O’Donnell, K. J., & Meaney, M. J. (2017). Fetal Origins of Mental Health: The Developmental Origins of Health and Disease Hypothesis. The American Journal of Psychiatry, 174(4), 319–328. https://doi.org/10.1176/appi.ajp.2016.16020138.

    Article  Google Scholar 

  • O’Mahony, S. M., Felice, V. D., Nally, K., Savignac, H. M., Claesson, M. J., Scully, P., et al. (2014). Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience, 277, 885–901. https://doi.org/10.1016/j.neuroscience.2014.07.054.

    Article  Google Scholar 

  • O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res, 277, 32-48. doi:S0166-4328(14)00476-8 [pii];10.1016/j.bbr.2014.07.027 [doi].

    Google Scholar 

  • O’Mahony, S. M., Clarke, G., Dinan, T. G., & Cryan, J. F. (2017). Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle? Neuroscience, 342, 37-54. doi:S0306-4522(15)00895-7 [pii] https://doi.org/10.1016/j.neuroscience.2015.09.068.

  • Oleskin, A. V., Kirovskaia, T. A., Botvinko, I. V., & Lysak, L. V. (1998). Effect of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Mikrobiologiia, 67(3), 305–312. http://europepmc.org/abstract/MED/9702725.

    Google Scholar 

  • Patterson, P. H. (2009). Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behavioural Brain Research, 204(2), 313–321. https://doi.org/10.1016/j.bbr.2008.12.016.

    Article  Google Scholar 

  • Pawluski, J. L., Golubeva, A. V., Grudet, F., O’Mahony, S. M., Bastiaanssen, T., Cherry, P., et al. (2019). Poster Presentation: Perinatal SSRI exposure and neonatal brain plasticity: role of maternal gut microbiome? In Fourth International Symposium on the Fetal Brain (ISFB). DC, USA: Washington.

    Google Scholar 

  • Pehme, P. M., Zhang, W., Finik, J., Pritchett, A., Buthmann, J., Dana, K., et al. (2018). Placental MAOA expression mediates prenatal stress effects on temperament in 12-month-olds. Infant and Child Development, 27(4). https://doi.org/10.1002/icd.2094.

  • Pelzer, E., Gomez-Arango, L. F., Barrett, H. L., & Nitert, M. D. (2017). Review: Maternal health and the placental microbiome. Placenta, 54, 30–37. https://doi.org/10.1016/j.placenta.2016.12.003.

    Article  Google Scholar 

  • Penalver Bernabe, B., Maki, P. M., Dowty, S. M., Salas, M., Cralle, L., Shah, Z., et al. (2020). Precision medicine in perinatal depression in light of the human microbiome. Psychopharmacology (Berl), 237(4), 915–941. https://doi.org/10.1007/s00213-019-05436-4.

    Article  Google Scholar 

  • Perez-Muñoz, M. E., Arrieta, M.-C., Ramer-Tait, A. E., & Walter, J. (2017). A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome, 5(1), 48–48. https://doi.org/10.1186/s40168-017-0268-4.

    Article  Google Scholar 

  • Pinto-Sanchez, M. I., Smecuol, E. C., Temprano, M. P., Sugai, E., Gonzalez, A., Moreno, M. L., et al. (2017). Bifidobacterium infantis NLS Super Strain Reduces the Expression of alpha-Defensin-5, a Marker of Innate Immunity, in the Mucosa of Active Celiac Disease Patients. Journal of Clinical Gastroenterology, 51(9), 814–817. https://doi.org/10.1097/MCG.0000000000000687.

    Article  Google Scholar 

  • Prince, A. L., Chu, D. M., Seferovic, M. D., Antony, K. M., Ma, J., & Aagaard, K. M. (2015). The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome. Cold Spring Harbor Perspectives in Medicine, 5(6). https://doi.org/10.1101/cshperspect.a023051.

  • Prince, A. L., Ma, J., Kannan, P. S., Alvarez, M., Gisslen, T., Harris, R. A., et al. (2016). The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am J Obstet Gynecol, 214(5), 627 e1-627 e16. https://doi.org/10.1016/j.ajog.2016.01.193.

  • Rackaityte, E., Halkias, J., Fukui, E. M., Mendoza, V. F., Hayzelden, C., Crawford, E. D., et al. (2020). Viable bacterial colonization is highly limited in the human intestine in utero. Nature Medicine, 26(4), 599–607. https://doi.org/10.1038/s41591-020-0761-3.

    Article  Google Scholar 

  • Rakers, F., Rupprecht, S., Dreiling, M., Bergmeier, C., Witte, O. W., & Schwab, M. (2017). Transfer of maternal psychosocial stress to the fetus. Neurosci. Biobehav. Rev. doi:S0149-7634(16)30719-9 [pii];10.1016/j.neubiorev.2017.02.019 [doi].

    Google Scholar 

  • Ramsteijn, A. S., Jasarevic, E., Houwing, D. J., Bale, T. L., & Olivier, J. D. (2020). Antidepressant treatment with fluoxetine during pregnancy and lactation modulates the gut microbiome and metabolome in a rat model relevant to depression. Gut Microbes, 1–19. https://doi.org/10.1080/19490976.2019.1705728.

  • Reigstad, C. S., Salmonson, C. E., Rainey, J. F., III, Szurszewski, J. H., Linden, D. R., Sonnenburg, J. L., et al. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J, 29(4), 1395-1403. doi:fj.14-259598 [pii];10.1096/fj.14-259598 [doi].

    Google Scholar 

  • Rodriguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., et al. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease, 26, 26050. https://doi.org/10.3402/mehd.v26.26050.

    Article  Google Scholar 

  • Ronovsky, M., Berger, S., Molz, B., Berger, A., & Pollak, D. D. (2016). Animal Models of Maternal Immune Activation in Depression Research. Current Neuropharmacology, 14(7), 688–704. https://doi.org/10.2174/1570159x14666151215095359.

    Article  Google Scholar 

  • Sampson, Timothy R., & Mazmanian, Sarkis K. (2015). Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host & Microbe, 17(5), 565-576. doi:doi:10.1016/j.chom.2015.04.011.

    Google Scholar 

  • Sender, R., Fuchs, S., & Milo, R. (2016). Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164(3), 337-340. doi:S0092-8674(16)00053-2 [pii];10.1016/j.cell.2016.01.013 [doi].

    Google Scholar 

  • Shin Yim, Y., Park, A., Berrios, J., Lafourcade, M., Pascual, L. M., Soares, N., et al. (2017). Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature, 549(7673), 482–487. https://doi.org/10.1038/nature23909.

    Article  Google Scholar 

  • Simon, J. C., Marchesi, J. R., Mougel, C., & Selosse, M. A. (2019). Host-microbiota interactions: from holobiont theory to analysis. Microbiome, 7(1), 5. https://doi.org/10.1186/s40168-019-0619-4.

    Article  Google Scholar 

  • Simons, S. S. H., Zijlmans, M. A. C., Cillessen, A. H. N., & de Weerth, C. (2019). Maternal prenatal and early postnatal distress and child stress responses at age 6. Stress, 22(6), 654–663. https://doi.org/10.1080/10253890.2019.1608945.

    Article  Google Scholar 

  • Stewart, C. J., Ajami, N. J., O’Brien, J. L., Hutchinson, D. S., Smith, D. P., Wong, M. C., et al. (2018). Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature, 562(7728), 583–588. https://doi.org/10.1038/s41586-018-0617-x.

    Article  Google Scholar 

  • Strandwitz, P. (2018). Neurotransmitter modulation by the gut microbiota. Brain Research, 1693, 128-133. doi:doi:10.1016/j.brainres.2018.03.015.

    Google Scholar 

  • Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., et al. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol, 558(Pt 1), 263-275. doi:10.1113/jphysiol.2004.063388 [doi];jphysiol.2004.063388. [pii].

    Google Scholar 

  • Sun, L., Zhang, H., Cao, Y., Wang, C., Zhao, C., Wang, H., et al. (2019). Fluoxetine ameliorates dysbiosis in a depression model induced by chronic unpredicted mild stress in mice. International Journal of Medical Sciences, 16(9), 1260–1270. https://doi.org/10.7150/ijms.37322.

    Article  Google Scholar 

  • Tarro, S. (2020). The Role of Gut Microbiota Diversity in Infant Attentional Processing of Emotional Faces at the Age of Eight Months. University of Turku. Retrieved from https://www.utupub.fi/bitstream/handle/10024/149532/Tarro_Saija_opinnayte.pdf?sequence=1.

  • Tengeler, A. C., Dam, S. A., Wiesmann, M., Naaijen, J., van Bodegom, M., Belzer, C., et al. (2020). Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome, 8(1), 44. https://doi.org/10.1186/s40168-020-00816-x.

    Article  Google Scholar 

  • Theis, K. R., Romero, R., Winters, A. D., Greenberg, J. M., Gomez-Lopez, N., Alhousseini, A., et al. (2019). Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am J Obstet Gynecol, 220(3), 267 e1-267 e39. https://doi.org/10.1016/j.ajog.2018.10.018.

  • Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., et al. (2013). Consumption of Fermented Milk Product With Probiotic Modulates Brain Activity. Gastroenterology, 144(7), 1394-1401.e4. doi:doi:10.1053/j.gastro.2013.02.043.

    Google Scholar 

  • Togher, K. L., Kenny, L. C., & O’Keeffe, G. W. (2017). Class-Specific Histone Deacetylase Inhibitors Promote 11-Beta Hydroxysteroid Dehydrogenase Type 2 Expression in JEG-3 Cells. Internation Journal of Cell Biology, 2017, 6169310. https://doi.org/10.1155/2017/6169310.

    Article  Google Scholar 

  • Togher, K., Khashan, A., Kenny, L., Stanton, C., Carafa, I., Murphy, K., et al. (2018a) ‘Depression associated alterations in the maternal microbiome during pregnancy: Implications for infant gut microbiome assembly’ Neuroscience Meeting. 2017. Washington DC.

    Google Scholar 

  • Togher, K. L., O’Keeffe, G. W., Khashan, A. S., Clarke, G., & Kenny, L. C. (2018b). Placental FKBP51 mediates a link between second trimester maternal anxiety and birthweight in female infants. Scientific Reports, 8(1), 15151. https://doi.org/10.1038/s41598-018-33357-3.

    Article  Google Scholar 

  • Van den Bergh, B. R. H., Dahnke, R., & Mennes, M. (2019). Prenatal stress and the developing brain: Risks for neurodevelopmental disorders - ERRATUM. Development and Psychopathology, 31(1), 395. https://doi.org/10.1017/S0954579418001402.

    Article  Google Scholar 

  • Veroniki, A. A., Rios, P., Cogo, E., Straus, S. E., Finkelstein, Y., Kealey, R., et al. (2017). Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: A systematic review and network meta-analysis. BMJ Open, 7(7). https://doi.org/10.1136/bmjopen-2017-017248.

  • Wang, J. P., Xu, Y. C., Hou, J. Q., Li, J. Y., Xing, J., Yang, B. X., et al. (2020). Effects of Dietary Fat Profile on Gut Microbiota in Valproate Animal Model of Autism. Frontiers in Medicine, 7. https://doi.org/10.3389/fmed.2020.00151.

  • Weaver, K. R., Sherwin, L. B., Walitt, B., Melkus, G. D., & Henderson, W. A. (2016). Neuroimaging the brain-gut axis in patients with irritable bowel syndrome. World J. Gastrointest. Pharmacol. Ther, 7(2), 320-333. doi:10.4292/wjgpt.v7.i2.320 [doi].

    Google Scholar 

  • Weikum, W. M., Brain, U., Chau, C. M., Grunau, R. E., Boyce, W. T., Diamond, A., et al. (2013). Prenatal serotonin reuptake inhibitor (SRI) antidepressant exposure and serotonin transporter promoter genotype (SLC6A4) influence executive functions at 6 years of age. Frontiers in Cellular Neuroscience, 7, 180. https://doi.org/10.3389/fncel.2013.00180.

    Article  Google Scholar 

  • Williams, L. J., Rotem-Kohavi, N., Weber, A.., Clarke, G., O’Mahony, S. M., Bastiaanssen, T. F.., et al. (2019). Data driven approaches to MR imaging to study the neonatal microbiome-gut-brain axis: A pilot study. (Poster Presentation). In Fourth International Symposium on the Fetal Brain (ISFB)). Washington, DC, USA.

    Google Scholar 

  • Willyard, C. (2018). Could baby’s first bacteria take root before birth? Nature, 553(7688), 264–266. https://doi.org/10.1038/d41586-018-00664-8.

    Article  Google Scholar 

  • Wu, J., Song, T. B., Li, Y. J., He, K. S., Ge, L., & Wang, L. R. (2007). Prenatal restraint stress impairs learning and memory and hippocampal PKCbeta1 expression and translocation in offspring rats. Brain Research, 1141, 205–213. https://doi.org/10.1016/j.brainres.2007.01.024.

    Article  Google Scholar 

  • Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264–276. doi:S0092-8674(15)00248-2 [pii];10.1016/j.cell.2015.02.047 [doi].

    Google Scholar 

  • Yassour, M., Jason, E., Hogstrom, L. J., Arthur, T. D., Tripathi, S., Siljander, H., et al. (2018). Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host & Microbe, 24(1), 146–154. e4. https://doi.org/10.1016/j.chom.2018.06.007.

    Article  Google Scholar 

  • Zhuang, L., Chen, H., Zhang, S., Zhuang, J., Li, Q., & Feng, Z. (2019). Intestinal microbiota in early life and its implications on childhood health. Genomics, Proteomics & Bioinformatics, 17(1), 13–25. https://doi.org/10.1016/j.gpb.2018.10.002.

    Article  Google Scholar 

  • Zijlmans, M. A., Korpela, K., Riksen-Walraven, J. M., de Vos, W. M., & de Weerth, C. (2015). Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology, 53, 233–245. doi:S0306-4530(15)00020-7 [pii];10.1016/j.psyneuen.2015.01.006 [doi].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siobhain M. O’Mahony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rotem-Kohavi, N. et al. (2021). The Microbiome-Gut-Brain Axis: A New Window to View the Impact of Prenatal Stress on Early Neurodevelopment. In: Wazana, A., Székely, E., Oberlander, T.F. (eds) Prenatal Stress and Child Development. Springer, Cham. https://doi.org/10.1007/978-3-030-60159-1_8

Download citation

Publish with us

Policies and ethics