Skip to main content

The Role of 5-HT2B Receptor on Aggression and Drugs of Abuse

  • Chapter
  • First Online:
5-HT2B Receptors

Part of the book series: The Receptors ((REC,volume 35))

  • 480 Accesses

Abstract

Monoamines, particularly serotonin (5-hydroxytryptamine, 5-HT), have been extensively studied in the context of aggression. 5-HT is known to play a key role in the modulation of aggressive, impulsive, antisocial, and violent behavior. There are several hypotheses that intend to explain the underlying relationship between 5-HT and aggressive behavior. While normal levels of 5-HT have an inhibitory effect on brain regions involved in aggressive behavior, a reduction in 5-HT activity increases aggression. Genetic factors are involved in the relationship between 5-HT and aggressive behavior and several genetic variants that influence aggressive behavior have been identified. 5-HT effects are mediated by at least 14 receptor subtypes and grouped into seven 5-HT receptor families (5-HT1–5-HT7 receptor). In the brain, 5-HT receptors are distributed pre- and post-synaptically and it is believed that these different subtypes may exert opposing effects on aggressive behavior. Aggressive behavior is influenced by a combination of genetic and environmental factors, including substance use. A high proportion of all crimes are committed under the influence of substances of abuse including alcohol, cannabis, cocaine. In this chapter, we will focus on 5-HT2B receptor and will discuss its role in the modulation of aggressive and impulsive behaviors as well as related traits such as drug abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown GL, Ebert MH, Goyer PF, Jimerson DC, Klein WJ, Bunney WE et al (1982) Aggression, suicide, and serotonin: relationships to CSF amine metabolites. Am J Psychiatry 139(6):741–746

    Article  CAS  PubMed  Google Scholar 

  2. Lidberg L, Tuck JR, Asberg M, Scalia-Tomba GP, Bertilsson L (1985) Homicide, suicide and CSF 5-HIAA. Acta Psychiatr Scand 71(3):230–236

    Article  CAS  PubMed  Google Scholar 

  3. Virkkunen M, Nuutila A, Goodwin FK, Linnoila M (1987) Cerebrospinal fluid monoamine metabolite levels in male arsonists. Arch Gen Psychiatry 44(3):241–247

    Article  CAS  PubMed  Google Scholar 

  4. Virkkunen M, Narvanen S (1987) Plasma insulin, tryptophan and serotonin levels during the glucose tolerance test among habitually violent and impulsive offenders. Neuropsychobiology 17(1–2):19–23

    Article  CAS  PubMed  Google Scholar 

  5. Limson R, Goldman D, Roy A, Lamparski D, Ravitz B, Adinoff B et al (1991) Personality and cerebrospinal fluid monoamine metabolites in alcoholics and controls. Arch Gen Psychiatry 48(5):437–441

    Article  CAS  PubMed  Google Scholar 

  6. Coccaro EF, Kavoussi RJ, Cooper TB, Hauger RL (1997) Central serotonin activity and aggression: inverse relationship with prolactin response to d-fenfluramine, but not CSF 5-HIAA concentration, in human subjects. Am J Psychiatry 154(10):1430–1435

    Article  CAS  PubMed  Google Scholar 

  7. Coccaro EF (1998) Impulsive aggression: a behavior in search of clinical definition. Harv Rev Psychiatry 5(6):336–339

    Article  CAS  PubMed  Google Scholar 

  8. Hibbeln JR, Umhau JC, George DT, Shoaf SE, Linnoila M, Salem N Jr (2000) Plasma total cholesterol concentrations do not predict cerebrospinal fluid neurotransmitter metabolites: implications for the biophysical role of highly unsaturated fatty acids. Am J Clin Nutr 71(1 Suppl):331S–338S

    Article  CAS  PubMed  Google Scholar 

  9. Coccaro EF, Lee R, Kavoussi RJ (2010) Aggression, suicidality, and intermittent explosive disorder: serotonergic correlates in personality disorder and healthy control subjects. Neuropsychopharmacology 35(2):435–444

    Article  CAS  PubMed  Google Scholar 

  10. Spoont MR (1992) Modulatory role of serotonin in neural information processing: implications for human psychopathology. Psychol Bull 112(2):330–350

    Article  CAS  PubMed  Google Scholar 

  11. Linnoila VM, Virkkunen M (1992) Aggression, suicidality, and serotonin. J Clin Psychiatry 53(Suppl):46–51

    PubMed  Google Scholar 

  12. Coccaro EF, Kavoussi RJ, Lesser JC (1992) Self- and other-directed human aggression: the role of the central serotonergic system. Int Clin Psychopharmacol 6(Suppl 6):70–83

    Article  PubMed  Google Scholar 

  13. Coccaro EF, Siever LJ, Klar HM, Maurer G, Cochrane K, Cooper TB et al (1989) Serotonergic studies in patients with affective and personality disorders. Correlates with suicidal and impulsive aggressive behavior. Arch Gen Psychiatry 46(7):587–599

    Article  CAS  PubMed  Google Scholar 

  14. New AS, Trestman RL, Mitropoulou V, Benishay DS, Coccaro E, Silverman J et al (1997) Serotonergic function and self-injurious behavior in personality disorder patients. Psychiatry Res 69(1):17–26

    Article  CAS  PubMed  Google Scholar 

  15. Moss HB, Yao JK, Panzak GL (1990) Serotonergic responsivity and behavioral dimensions in antisocial personality disorder with substance abuse. Biol Psychiatry 28(4):325–338

    Article  CAS  PubMed  Google Scholar 

  16. O’Keane V, Moloney E, O’Neill H, O’Connor A, Smith C, Dinan TG (1992) Blunted prolactin responses to d-fenfluramine in sociopathy. Evidence for subsensitivity of central serotonergic function. Br J Psychiatry 160:643–646

    Article  PubMed  Google Scholar 

  17. Moeller FG, Steinberg JL, Petty F, Fulton M, Cherek DR, Kramer G et al (1994) Serotonin and impulsive/aggressive behavior in cocaine dependent subjects. Prog Neuropsychopharm 18(6):1027–1035

    Article  CAS  Google Scholar 

  18. Marks DJ, Miller SR, Schulz KP, Newcorn JH, Halperin JM (2007) The interaction of psychosocial adversity and biological risk in childhood aggression. Psychiatry Res 151(3):221–230

    Article  PubMed  Google Scholar 

  19. Berman ME, McCloskey MS, Fanning JR, Schumacher JA, Coccaro EF (2009) Serotonin augmentation reduces response to attack in aggressive individuals. Psychol Sci 20(6):714–720

    Article  PubMed  Google Scholar 

  20. Duke AA, Begue L, Bell R, Eisenlohr-Moul T (2013) Revisiting the serotonin-aggression relation in humans: a meta-analysis. Psychol Bull 139(5):1148–1172

    Article  PubMed  PubMed Central  Google Scholar 

  21. Siever LJ, Buchsbaum MS, New AS, Spiegel-Cohen J, Wei T, Hazlett EA et al (1999) d,l-fenfluramine response in impulsive personality disorder assessed with [18F]fluorodeoxyglucose positron emission tomography. Neuropsychopharmacology 20(5):413–423

    Article  CAS  PubMed  Google Scholar 

  22. New AS, Hazlett EA, Buchsbaum MS, Goodman M, Reynolds D, Mitropoulou V et al (2002) Blunted prefrontal cortical 18fluorodeoxyglucose positron emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Arch Gen Psychiatry 59(7):621–629

    Article  CAS  PubMed  Google Scholar 

  23. New AS, Buchsbaum MS, Hazlett EA, Goodman M, Koenigsberg HW, Lo J et al (2004) Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology 176(3–4):451–458

    Article  CAS  PubMed  Google Scholar 

  24. Leyton M, Okazawa H, Diksic M, Paris J, Rosa P, Mzengeza S et al (2001) Brain regional alpha-[11C]methyl-L-tryptophan trapping in impulsive subjects with borderline personality disorder. Am J Psychiatry 158(5):775–782

    Article  CAS  PubMed  Google Scholar 

  25. Frankle WG, Lombardo I, New AS, Goodman M, Talbot PS, Huang Y et al (2005) Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am J Psychiatry 162(5):915–923

    Article  PubMed  Google Scholar 

  26. Goodman M, New A (2000) Impulsive aggression in borderline personality disorder. Curr Psychiatry Rep 2(1):56–61

    Article  CAS  PubMed  Google Scholar 

  27. Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165(4):429–442

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schoeler T, Theobald D, Pingault JB, Farrington DP, Jennings WG, Piquero AR et al (2016) Continuity of cannabis use and violent offending over the life course. Psychol Med 46(8):1663–1677

    Article  CAS  PubMed  Google Scholar 

  29. Veroude K, Zhang-James Y, Fernandez-Castillo N, Bakker MJ, Cormand B, Faraone SV (2016) Genetics of aggressive behavior: an overview. Am J Med Genet B. 171B(1):3–43

    Article  Google Scholar 

  30. Waltes R, Chiocchetti AG, Freitag CM (2016) The neurobiological basis of human aggression: a review on genetic and epigenetic mechanisms. Am J Med Genet B 171(5):650–675

    Article  Google Scholar 

  31. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase a. Science 262(5133):578–580

    Article  CAS  PubMed  Google Scholar 

  32. Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH, Wolters EC et al (1993) X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52(6):1032–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854

    Article  CAS  PubMed  Google Scholar 

  34. Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J et al (2009) MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry 65(5):417–424

    Article  CAS  PubMed  Google Scholar 

  35. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T et al (2010) A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468(7327):1061–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tikkanen R, Tiihonen J, Rautiainen MR, Paunio T, Bevilacqua L, Panarsky R et al (2015) Impulsive alcohol-related risk-behavior and emotional dysregulation among individuals with a serotonin 2B receptor stop codon. Transl Psychiatry 5:e681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Montalvo-Ortiz JL, Zhou H, D’Andrea I, Maroteaux L, Lori A, Smith A et al (2018) Translational studies support a role for serotonin 2B receptor (HTR2B) gene in aggression-related cannabis response. Mol Psychiatry 23(12):2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fanning JR, Coccaro EF (2016) Neurobiology of impulsive aggression. In: Kleespies PM (ed) The Oxford handbook of behavioral emergencies and crises. Oxford University Press, New York, pp 1–28

    Google Scholar 

  39. McCorvy JD, Roth BL (2015) Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther 150:129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonaventure P, Guo H, Tian B, Liu X, Bittner A, Roland B et al (2002) Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res 943(1):38–47

    Article  CAS  PubMed  Google Scholar 

  41. Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76(2):323–329

    Article  CAS  PubMed  Google Scholar 

  42. Foguet M, Hoyer D, Pardo LA, Parekh A, Kluxen FW, Kalkman HO et al (1992) Cloning and functional characterization of the rat stomach fundus serotonin receptor. EMBO J 11(9):3481–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tian D, Wang P, Tang B, Teng X, Li C, Liu X et al (2020) GWAS atlas: a curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res 48(D1):D927–DD32

    Article  CAS  PubMed  Google Scholar 

  44. Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM et al (2008) Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 28(11):2933–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Belmer A, Quentin E, Diaz SL, Guiard BP, Fernandez SP, Doly S et al (2018) Positive regulation of raphe serotonin neurons by serotonin 2B receptors. Neuropsychopharmacology 43:1623–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McDevitt RA, Neumaier JF (2011) Regulation of dorsal raphe nucleus function by serotonin autoreceptors: a behavioral perspective. J Chem Neuroanat 41(4):234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Diaz SL, Maroteaux L (2011) Implication of 5-HT2B receptors in the serotonin syndrome. Neuropharmacology 61:495–502

    Article  CAS  PubMed  Google Scholar 

  48. Hertz L, Rothman DL, Li B, Peng L (2015) Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 9:25

    PubMed  PubMed Central  Google Scholar 

  49. Diaz SL, Doly S, Narboux-Neme N, Fernandez S, Mazot P, Banas SM et al (2012) 5-HT(2B) receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17(2):154–163

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Song D, Gu L, Ren Y, Verkhratsky A, Peng L (2015) Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson’s disease. Front Cell Neurosci 9:388

    Article  PubMed  PubMed Central  Google Scholar 

  51. Quentin E, Belmer A, Maroteaux L (2018) Somato-dendritic regulation of raphe serotonin neurons; a key to antidepressant action. Front Neurosci 12:982

    Article  PubMed  PubMed Central  Google Scholar 

  52. Launay JM, Schneider B, Loric S, Da Prada M, Kellermann O (2006) Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. FASEB J 20:1843–1854

    Article  CAS  PubMed  Google Scholar 

  53. Cathala A, Devroye C, Drutel G, Revest JM, Artigas F, Spampinato U (2019) Serotonin2B receptors in the rat dorsal raphe nucleus exert a GABA-mediated tonic inhibitory control on serotonin neurons. Exp Neurol 311:57–66

    Article  CAS  PubMed  Google Scholar 

  54. de Las Casas-Engel M, Corbi AL (2014) Serotonin modulation of macrophage polarization: inflammation and beyond. Adv Exp Med Biol 824:89–115

    Article  PubMed  CAS  Google Scholar 

  55. Szabo A, Gogolak P, Koncz G, Foldvari Z, Pazmandi K, Miltner N et al (2018) Immunomodulatory capacity of the serotonin receptor 5-HT2B in a subset of human dendritic cells. Sci Rep 8(1):1765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lin Z, Walther D, Yu XY, Drgon T, Uhl GR (2004) The human serotonin receptor 2B: coding region polymorphisms and association with vulnerability to illegal drug abuse. Pharmacogenetics 14(12):805–811

    Article  CAS  PubMed  Google Scholar 

  57. Zhu B, Chen C, Moyzis RK, Dong Q, Chen C, He Q, Li J, Lei X, Lin C (2012) Association between the HTR2B gene and the personality trait of fun seeking. Personal Individ Differ 53:1029–1033

    Article  Google Scholar 

  58. Hervas A, Toma C, Romaris P, Ribases M, Salgado M, Bayes M et al (2014) The involvement of serotonin polymorphisms in autistic spectrum symptomatology. Psychiatr Genet 24(4):158–163

    Article  CAS  PubMed  Google Scholar 

  59. Meltzer HY, Horiguchi M, Massey BW (2011) The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology 213(2–3):289–305

    Article  CAS  PubMed  Google Scholar 

  60. Abbas AI, Yadav PN, Yao WD, Arbuckle MI, Grant SG, Caron MG et al (2009) PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J Neurosci 29(22):7124–7136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kiss T, Hernadi L, Laszlo Z, Fekete ZN, Elekes K (2010) Peptidergic modulation of serotonin and nerve elicited responses of the salivary duct muscle in the snail. Helix pomatia Peptides 31(6):1007–1018

    Article  CAS  PubMed  Google Scholar 

  62. Shahid M, Walker GB, Zorn SH, Wong EH (2009) Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol 23(1):65–73

    Article  CAS  PubMed  Google Scholar 

  63. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR et al (2003) Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 28(8):1400–1411

    Article  CAS  PubMed  Google Scholar 

  64. Bevilacqua L, Goldman D (2013) Genetics of impulsive behaviour. Philos Trans R Soc Lond Ser B Biol Sci 368(1615):20120380

    Article  CAS  Google Scholar 

  65. Foroud T, Edenberg HJ, Goate A, Rice J, Flury L, Koller DL et al (2000) Alcoholism susceptibility loci: confirmation studies in a replicate sample and further mapping. Alcohol Clin Exp Res 24(7):933–945

    Article  CAS  PubMed  Google Scholar 

  66. Uhl GR, Liu QR, Walther D, Hess J, Naiman D (2001) Polysubstance abuse-vulnerability genes: genome scans for association, using 1,004 subjects and 1,494 single-nucleotide polymorphisms. Am J Hum Genet 69(6):1290–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reif A, Lesch KP (2003) Toward a molecular architecture of personality. Behav Brain Res 139(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  68. Tsuchimine S, Taniguchi T, Sugawara N, Kaneda A, Yasui-Furukori N (2013) No association between a polymorphism in the serotonin receptor 2B (HTR2B) gene and personality traits in healthy Japanese subjects. Neuropsychobiology 68(1):59–62

    Article  CAS  PubMed  Google Scholar 

  69. Dehning S, Muller N, Matz J, Bender A, Kerle I, Benninghoff J et al (2010) A genetic variant of HTR2C may play a role in the manifestation of Tourette syndrome. Psychiatr Genet 20(1):35–38

    Article  PubMed  Google Scholar 

  70. Guo Y, Su L, Zhang J, Lei J, Deng X, Xu H et al (2012) Analysis of the BTBD9 and HTR2C variants in Chinese Han patients with Tourette syndrome. Psychiatr Genet 22(6):300–303

    Article  CAS  PubMed  Google Scholar 

  71. Pitychoutis PM, Belmer A, Moutkine I, Adrien J, Maroteaux L (2015) Mice lacking the serotonin Htr2B receptor gene present an antipsychotic-sensitive schizophrenic-like phenotype. Neuropsychopharmacology 40(12):2764–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Delprato A, Bonheur B, Algeo MP, Murillo A, Dhawan E, Lu L et al (2018) A quantitative trait locus on chromosome 1 modulates intermale aggression in mice. Genes Brain Behav 17(7):e12469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chu Q, Liang T, Fu L, Li H, Zhou B (2017) Behavioural genetic differences between Chinese and European pigs. J Genet 96(4):707–715

    Article  PubMed  Google Scholar 

  74. Theodoridi A, Tsalafouta A, Pavlidis M (2017) Acute exposure to fluoxetine alters aggressive behavior of Zebrafish and expression of genes involved in serotonergic system regulation. Front Neurosci 11:223

    Article  PubMed  PubMed Central  Google Scholar 

  75. Karberg JC, James DJ (2005) In: Statistics BoJ (ed) Substance dependence, abuse, and treatment of jail inmates, 2002. U.S. Dept. of Justice, Office of Justice Programs, Bureau of Justice Statistics, Washington, DC

    Google Scholar 

  76. Tikkanen R, Holi M, Lindberg N, Virkkunen M (2007) Tridimensional personality questionnaire data on alcoholic violent offenders: specific connections to severe impulsive cluster B personality disorders and violent criminality. BMC Psychiatry 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang H, Herman AI, Kranzler HR, Anton RF, Zhao H, Zheng W et al (2013) Array-based profiling of DNA methylation changes associated with alcohol dependence. Alcohol Clin Exp Res 37(Suppl 1):E108–E115

    Article  CAS  PubMed  Google Scholar 

  78. Xu H, Wang F, Kranzler HR, Gelernter J, Zhang H (2017) Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes. Sci Rep 7:41816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller NS, Gold MS, Mahler JC (1991) Violent behaviors associated with cocaine use: possible pharmacological mechanisms. Int J Addict 26(10):1077–1088

    Article  CAS  PubMed  Google Scholar 

  80. Davis WM (1996) Psychopharmacologic violence associated with cocaine abuse: kindling of a limbic dyscontrol syndrome? Prog Neuropsychopharm. 20(8):1273–1300

    Article  CAS  Google Scholar 

  81. Blanchard DC, Blanchard RJ (1999) Cocaine potentiates defensive behaviors related to fear and anxiety. Neurosci Biobehav Rev 23(7):981–991

    Article  CAS  PubMed  Google Scholar 

  82. Devroye C, Cathala A, Di Marco B, Caraci F, Drago F, Piazza PV et al (2015) Central serotonin2B receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow. Neuropharmacology 97:329–337

    Article  CAS  PubMed  Google Scholar 

  83. Volkow ND, Tomasi D, Wang GJ, Logan J, Alexoff DL, Jayne M et al (2014) Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers. Mol Psychiatry 19(9):1037–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Doly S, Quentin E, Eddine R, Tolu S, Fernandez SP, Bertran-Gonzalez J et al (2017) Serotonin 2B receptors in Mesoaccumbens dopamine pathway regulate cocaine responses. J Neurosci 37(43):10372–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Czermainski FR, Willhelm AR, Santos AZ, Pachado MP, de Almeida RMM (2017) Assessment of inhibitory control in crack and/or cocaine users: a systematic review. Trends Psychiatr Psychother 39(3):216–225

    Article  Google Scholar 

  86. Miguel CS, Martins PA, Moleda N, Klein M, Chaim-Avancini T, Gobbo MA et al (2016) Cognition and impulsivity in adults with attention deficit hyperactivity disorder with and without cocaine and/or crack dependence. Drug Alcohol Depend 160:97–104

    Article  PubMed  Google Scholar 

  87. Perez de Los Cobos J, Sinol N, Puerta C, Cantillano V, Lopez Zurita C, Trujols J (2011) Features and prevalence of patients with probable adult attention deficit hyperactivity disorder who request treatment for cocaine use disorders. Psychiatry Res 185(1–2):205–210

    Article  PubMed  Google Scholar 

  88. Lacoste J, Lamy S, Ramoz N, Ballon N, Jehel L, Maroteaux L et al (2019) A positive association between a polymorphism in the HTR2B gene and cocaine-crack in a French Afro-Caribbean population. World J Biol Psychiatry 28:1–6. https://doi.org/10.1080/15622975.2018.1563721. Epub ahead of print. PMID: 30608182

  89. Solowij N, Jones KA, Rozman ME, Davis SM, Ciarrochi J, Heaven PC et al (2012) Reflection impulsivity in adolescent cannabis users: a comparison with alcohol-using and non-substance-using adolescents. Psychopharmacology 219(2):575–586

    Article  CAS  PubMed  Google Scholar 

  90. Gruber SA, Dahlgren MK, Sagar KA, Gonenc A, Killgore WD (2012) Age of onset of marijuana use impacts inhibitory processing. Neurosci Lett 511(2):89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bhattacharyya S, Atakan Z, Martin-Santos R, Crippa JA, Kambeitz J, Malhi S et al (2015) Impairment of inhibitory control processing related to acute psychotomimetic effects of cannabis. Eur Neuropsychopharmacol 25(1):26–37

    Article  CAS  PubMed  Google Scholar 

  92. Renard J, Krebs MO, Le Pen G, Jay TM (2014) Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci 8:361

    Article  PubMed  PubMed Central  Google Scholar 

  93. Barthelemy OJ, Richardson MA, Cabral HJ, Frank DA (2016) Prenatal, perinatal, and adolescent exposure to marijuana: relationships with aggressive behavior. Neurotoxicol Teratol 58:60–77

    Article  CAS  PubMed  Google Scholar 

  94. Dugre JR, Dellazizzo L, Giguere CE, Potvin S, Dumais A (2017) Persistency of Cannabis use predicts violence following acute psychiatric discharge. Front Psych 8:176

    Article  Google Scholar 

  95. Muris P, Meesters C, Blijlevens P (2007) Self-reported reactive and regulative temperament in early adolescence: relations to internalizing and externalizing problem behavior and "big three" personality factors. J Adolesc 30(6):1035–1049

    Article  PubMed  Google Scholar 

  96. Trull TJ, Widiger TA (2013) Dimensional models of personality: the five-factor model and the DSM-5. Dialogues Clin Neurosci 15(2):135–146

    Article  PubMed  PubMed Central  Google Scholar 

  97. Haj-Dahmane S, Shen RY (2011) Modulation of the serotonin system by endocannabinoid signaling. Neuropharmacology 61(3):414–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68-69:619–631

    Article  CAS  PubMed  Google Scholar 

  99. Mendiguren A, Aostri E, Pineda J (2018) Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects. Life Sci 192:115–127

    Article  CAS  PubMed  Google Scholar 

  100. Colangeli R, Di Maio R, Pierucci M, Deidda G, Casarrubea M, Di Giovanni G (2019) Synergistic action of CB1 and 5-HT2B receptors in preventing pilocarpine-induced status epilepticus in rats. Neurobiol Dis 125:135–145

    Article  CAS  PubMed  Google Scholar 

  101. Aso E, Renoir T, Mengod G, Ledent C, Hamon M, Maldonado R et al (2009) Lack of CB1 receptor activity impairs serotonergic negative feedback. J Neurochem 109(3):935–944

    Article  CAS  PubMed  Google Scholar 

  102. Blanco-Gandia MC, Mateos-Garcia A, Garcia-Pardo MP, Montagud-Romero S, Rodriguez-Arias M, Minarro J et al (2015) Effect of drugs of abuse on social behaviour: a review of animal models. Behav Pharmacol 26(6):541–570

    Article  CAS  PubMed  Google Scholar 

  103. Gerra G, Zaimovic A, Ampollini R, Giusti F, Delsignore R, Raggi MA et al (2001) Experimentally induced aggressive behavior in subjects with 3,4-methylenedioxy-methamphetamine ("ecstasy") use history: psychobiological correlates. J Subst Abus 13(4):471–491

    Article  CAS  Google Scholar 

  104. Doly S, Bertran-Gonzalez J, Callebert J, Bruneau A, Banas SM, Belmer A et al (2009) Role of serotonin via 5-HT2B receptors in the reinforcing effects of MDMA in mice. PLoS One 4(11):e7952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wacker D, Wang S, Mccorvy JD, Betz RM, Venkatakrishnan AJ, Levit A et al (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168(3):377–89.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janitza L. Montalvo-Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montalvo-Ortiz, J.L., Coccaro, E.F. (2021). The Role of 5-HT2B Receptor on Aggression and Drugs of Abuse. In: Maroteaux, L., Monassier, L. (eds) 5-HT2B Receptors. The Receptors, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-55920-5_17

Download citation

Publish with us

Policies and ethics