Skip to main content

The Nonclassic Adrenal Hyperplasias

  • Chapter
Androgen Excess Disorders in Women

Part of the book series: Contemporary Endocrinology ((COE))

  • 1790 Accesses

Abstract

Nonclassic adrenal hyperplasia (NCAH) resulting from 11β-hydroxylase or 3β-hydroxysteroid dehydrogenase is very rare and may not even exist in women presenting with hyperandrogenism in adulthood. Consequently, screening for these disorders in hyperandrogenic patients is not generally necessary. Alternatively, 21-hydroxylase (21-OH)-deficient NCAH has been increasingly recognized in adolescent or adult hyperandrogenic patients. It is now widely accepted that neither clinical presentation nor androgen plasma levels can be used for the screening or diagnosis of 21-OH-deficient NCAH in hyperandrogenic women, especially those presenting with a polycystic ovary syndrome (PCOS)-like phenotype. Therefore, the measurement of a follicular morning level of serum 17α-hydroxyprogesterone (17-OHP) should be included in the initial investigation of all hyperandrogenic women, including those with premature pubarche. A basal screening level of 17-OHP of more than 2–4 ng/mL mandates an acute adrenocorticotropic hormone (ACTH) stimulation test to confirm the diagnosis. A post-ACTH stimulation 17-OHP level of 10–12 ng/mL is consistent with the diagnosis of NCAH. The diagnosis of 21-OH-deficient NCAH has important implications for preconception counseling and potentially for the prevention of adrenal insufficiency during illness or surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 269.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jayle MF, Weinmann SH, Baulieu EE, Villin Y. Virilisme post-pubertaire discret par déficience de l’hydroxylation enC21. Acta Endocrinol (Copenh) 1958;29:513–524.

    CAS  Google Scholar 

  2. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet 1985;37:650.

    PubMed  CAS  Google Scholar 

  3. Temeck JW, Pang S, Nelson C, New MI. Genetic defects of steroidogenesis in premature pubarche. J Clin Endocrinol Metab 1987;64:609.

    PubMed  CAS  Google Scholar 

  4. Hawkins LA, Chasalow FI, Blethen SL. The role of adrenocorticotropin testing in evaluating girls with premature adrenarche and hirsutism/oligomenorrhea. J Clin Endocrinol Metab 1992;74:248.

    Article  PubMed  CAS  Google Scholar 

  5. Pang S, Lerner AJ, Stoner E, et al. Late-onset adrenal steroid 3β-hydroxysteroid dehydrogenase deficiency. I. A cause of hirsutism in pubertal and postpubertal women. J Clin Endocrinol Metab 1985;60:428.

    PubMed  CAS  Google Scholar 

  6. Schram P, Zerah M, Mani P, Jewelewics R, Jaffe S, New MI. Nonclassical 3β-hydroxysteroid dehydrogenase deficiency: A review of our experience with 25 female patients. Fertil Steril 1992;58:129.

    PubMed  CAS  Google Scholar 

  7. Morán C, Tena G, Herrera J, Bermúdez JA., Zárate A. Heterogeneity of late-onset adrenal 3β-ol-hydroxysteroid dehydrogenase deficiency in patients with hirsutism and polycystic ovaries. Arch Med Res 1994;25:315.

    PubMed  Google Scholar 

  8. Azziz R, Bradley EL Jr, Potter HD, Boots LR. 3β-Hydroxysteroid dehydrogenase deficiency in hyperandrogenism. Am J Obstet Gynecol 1993;168:889.

    PubMed  CAS  Google Scholar 

  9. Mathieson J, Couzinet B, Wekstein-Noel S, Nahoul K, Turpin G, Schiason G. The incidence of late-onset congenital adrenal hyperplasia resulting from 3β-hydroxysteroid dehydrogenase deficiency among hirsute women. Clin Endocrinol 1992;36:383.

    CAS  Google Scholar 

  10. Azziz R, Black V, Hines GA, Fox LM, Boots LR. Adrenal androgen excess in the polycystic ovary syndrome: sensitivity and responsivity of the hypothalamic-pituitary-adrenal axis. J Clin Endocrinol Metab 1998;83(7):2317–2323.

    Article  PubMed  CAS  Google Scholar 

  11. Zerah M, Rheaume E, Mani P, et al. No evidence of mutations in the genes for type I and type II 3β-hydroxysteroid dehydrogenase (3β-HSD) in nonclassical 3ß-HSD deficiency. J Clin Endocrinol Metab 1994;79:1811.

    Article  PubMed  CAS  Google Scholar 

  12. Chang YT, Zhang L, Alkaddour HS, et al. Absence of molecular defect in the type II 3β-hydroxysteroid dehydrogenase (3β-HSD) gene in premature pubarche children and hirsute female patients with moderately decreased adrenal 3β-HSD activity. Pediatr Res 1995;37:820.

    Article  PubMed  CAS  Google Scholar 

  13. Sakkal-Alkaddour H, Zhang L, Yang X, et al. Studies of 3β-hydroxysteroid dehydrogenase genes in infants and children manifesting premature pubarche and increased ACTH stimulation ?5 steroid levels. J Clin Endocrinol Metab 1996;81:3961.

    Article  PubMed  CAS  Google Scholar 

  14. Lutfallah C, Wang W, Mason JI, et al. Newly proposed hormonal criteria via genotypic proof for type II 3beta-hydroxysteroid dehydrogenase deficiency. J Clin Endocrinol Metab 2002;87(6):2611–2622.

    Article  PubMed  CAS  Google Scholar 

  15. Pang S, Carbunaru G, Haider A, et al. The hormonal phenotype of nonclassic 3 beta-hydroxysteroid dehydrogenase (HSD3B) deficiency in hyperandrogenic females is associated with insulin-resistant polycystic ovary syndrome and is not a variant of inherited HSD3B2 deficiency. J Clin Endocrinol Metab 2004;89(2):783–794.

    Article  PubMed  CAS  Google Scholar 

  16. Zachmann M, Tassinari D, Prader A. Clinical and biochemical variability of congenital adrenal hyperplasia resulting from 11?-hydroxylase deficiency. A study of 25 patients. J Clin Endocrinol Metab 1983;56:222.

    CAS  Google Scholar 

  17. Cathelineau G, Brerault JL, Fiet J, Julien R, Dreux C, Canivet J. Adrenocortical 11 beta-hydroxylation defect in adult women with postmenarchial onset of symptoms. J Clin Endocrinol Metab 1980;51:287.

    PubMed  CAS  Google Scholar 

  18. Carmina E, Malizia G, Janni A. Prevalence of late-onset 21-hydroxylase deficiency in hirsutism of western sicily. J Endocrinol Invest 1987;10:75.

    Google Scholar 

  19. Azziz R, Boots LR, Parker CR Jr, Bradley E Jr, Zacur HA. 11β-Hydroxylase deficiency in hyperandrogenism. Fertil Steril 1991;55:733.

    PubMed  CAS  Google Scholar 

  20. Miller WL. Molecular biology of steroid hormone synthesis. Endo Rev 1988;9:295.

    CAS  Google Scholar 

  21. Joehrer K, Geley S, Strasser-Wozak EMC, et al. CYP11B1 mutations causing nonclassic adrenal hyperplasia resulting from 11β-hydroxylase deficiency. Hum Mol Genet 1997;6:1829.

    Article  PubMed  CAS  Google Scholar 

  22. Miller WL. Genetics, diagnosis, and management of 21-hydroxylase deficiency. J Clin Endocrinol Metab 1994;78:241.

    Article  PubMed  CAS  Google Scholar 

  23. Morel Y, Miller WL. Clinical and molecular genetics of congenital adrenal hyperplasia resulting from 21-hydroxylase deficiency. Adv Hum Genet 1991;20:1.

    PubMed  CAS  Google Scholar 

  24. Chiou SH, Hu MC, Chung B. A missense mutation of Ile172 to Asn or Arg 356 to Trp causes steriod 21-hydroxylase deficiency. J Biol Chem 1990;256:3549.

    Google Scholar 

  25. Higashi Y, Hiromasa T, Tanae A, et al. Effects of individual mutations in the P-450c21 pseudogene on P-450c21 activity and their distrobution in patient genomes of congenital steroid 21-hydroxylase deficiency. J Biochem 1991;109:638.

    PubMed  CAS  Google Scholar 

  26. Wu DA, Chung B. Mutations of P450c21 (steroid 21-hydroxylase) at Cys428, Val281, or Ser268 result in complete, partial, or no loss of enzymatic activity. J Clin Invest 1991;88:519.

    PubMed  CAS  Google Scholar 

  27. Mornet E, Crete P, Kuttenn F, et al. Distribution of deletions and seven point mutations on CYP21B genes in three clinical forms of steroid 21-hydroxylase deficiency. Am J Hum Genet 1991;48:79.

    PubMed  CAS  Google Scholar 

  28. Speiser PW, Dupont J, Zhu D, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia resulting from 21-hydroxylase deficiency. J Clin Invest 1992;90:584.

    PubMed  CAS  Google Scholar 

  29. Owerbach D, Sherman L, Ballard AL, Azziz R. Pro 453 to Ser mutation in CYP21 is associated with nonclassical steroid 21-hydroxylase deficiency. Mol Endocrinol 1992;6:1211.

    Article  PubMed  CAS  Google Scholar 

  30. Bobba A, Iolascon A, Giannattasio S, et al. A multicenter study of women with nonclassical congenital adrenal hyperplasia: relationship between genotype and phenotype. Mol Genet Metab 2000;71:527–534.

    Article  CAS  Google Scholar 

  31. Krawczak M, Cooper DN. The human gene mutation database. Trends Genet 2003;13:121–122.

    Article  Google Scholar 

  32. Azziz R, Slayden SM. Mechanisms of steroid excess in 21-hydroxylase deficient non-classic adrenal hyperplasia. J Soc Gynecol Invest 1996;3:297.

    Article  CAS  Google Scholar 

  33. Mellon SH., Miller WL. Extra-adrenal steroid 21-hydroxylase is not mediated by P450c21. J Clin Invest 1989;84:1497.

    Article  PubMed  CAS  Google Scholar 

  34. Speiser PW, Agdere L, Veshiba H, White PC, New MI. Aldosterone synthesis in patients with salt-wasting congenital adrenal hyperplasia (21-hydroxylase deficiency) and complete absence of adrenal 21-hydroxylase (P450c21). N Engl J Med 1991;3221:145.

    Article  Google Scholar 

  35. Sydnor KL, Kelley VC, Raile RB, Ely RS, Sayers G. Blood adrenocorticotrophin in children with congenital adrenal hyperplasia. Proc Soc Exp Biol Med 1953;82:695.

    CAS  Google Scholar 

  36. Cacciari E, Cicognani A, Pirazzoli P, et al. GH, ACTH, TSH, LH, and FSH reserve in prepubertal girls with congenital adrenal hyperplasia. J Clin Endocrinol Metab 1976;43:1146.

    Article  PubMed  CAS  Google Scholar 

  37. Richards GE, Grumbach MM, Kaplan SL, Conte FA. The effect of long acting glucocorticoids on menstrual abnormalities in patients with virilizing congenital adrenal hyperplasia. J Clin Endocrinol Metab 1978;47:1208.

    PubMed  CAS  Google Scholar 

  38. Moreira AC, Elias LLK. Pituitary-adrenal responses to corticotropin-releasing hormone in different degrees of adrenal 21-hydroxylase deficiency. J Clin Endocrinol Metab 1992;74:198.

    Article  PubMed  CAS  Google Scholar 

  39. Feuillan P, Pang S, Schürmeyer T, Avgerinos PC, Chrousos GP. The hypothalamic-pituitary-adrenal axis in partial (late-onset) 21-hydroxylase deficiency. J Clin Endocrinol Metab 1988;67:154.

    PubMed  CAS  Google Scholar 

  40. Carmina E, Lobo R. Pituitary-adrenal responses to corticotropin-releasing factor in late onset 21-hydroxylase deficiency. Fertil Steril 1990;54:79.

    PubMed  CAS  Google Scholar 

  41. Ghizzoni L, Bernasconi S, Virdis R, et al. Dynamics of 24-hour pulsatile cortisol, 17-hydroxyprogesterone, and andros-tenedione release in prepubertal patients with nonclassic 21-hydroxylase deficiency and normal prepubertal children. Metabolism 1994;43:372.

    Article  PubMed  CAS  Google Scholar 

  42. Azziz R, Kenney PH. Magnetic resonance imaging of the adrenal gland in women with late-onset adrenal hyperplasia. Fertil Steril 1991;56:142–144.

    PubMed  CAS  Google Scholar 

  43. Jaresch S, Kornely E, Kley HK, Schlaghecke R. Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J Clin Endocrinol Metab 1992;74:685–689.

    Article  PubMed  CAS  Google Scholar 

  44. Kater CE, Biglieri EG, Wajchenberg B. Effects of continued adrenal corticotropin stimulation on the mineralocorticoid hormones in classical and nonclassical symbol virilizing types of 21-hydroxylase deficiency. J Clin Endocrinol Metab 1985;60:l057.

    Google Scholar 

  45. Waterman MR, Mason JI, Zuber MX, et al. Expression of P-450 enzyme activities in heterologous cells by transfection. Arch Toxicol 1989;13:155.

    CAS  Google Scholar 

  46. Lin D, Harikrishna JA, Moore CCD, Jones KL, Miller WL. Missense mutation Ser106 →Pro causes 17α-hydroxylase deficiency. J Biol Chem 266:15992.

    Google Scholar 

  47. Sanchez LA, Moran C, Reyna R, Ochoa T, Boots LR, Azziz R. Adrenal progestogen and androgen production in 21-hydroxylase-deficient nonclassic adrenal hyperplasia is partially independent of adrenocorticotropic hormone stimulation. Fertil Steril 2002;77(4):750–753.

    Article  PubMed  Google Scholar 

  48. Huerta R, Dewailly D, Decanter C, Knochenhauer ES, Boots LR, Azziz R. Adrenocortical hyperresponsivity to adrenocorticotropic hormone: a mechanism favoring the normal production of cortisol in 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil Steril 2000;74(2):329–334.

    Article  PubMed  CAS  Google Scholar 

  49. Dewailly D, Vantyghem-Haudiquet MC, Sainsard C, et al. Clinical and biological phenotypes in late-onset 21-hydroxylase deficiency. J Clin Endocrinol Metab 1986;63:418.

    PubMed  CAS  Google Scholar 

  50. Levine LS, Dupont B, Lorenzen F, et al. Cryptic 21-hydroxylase deficiency in families of patients with classical congenital adrenal hyperplasia. J Clin Endocrinol Metab 1980;51:1316.

    PubMed  CAS  Google Scholar 

  51. Carmina E, Longo RA. Ovarian suppression reduces clinical and endocrine expression of late-onset congenital adrenal hyperplasia due to 21-hydroxlase deficiency. Fertil Steril 1994;62:738–743.

    PubMed  CAS  Google Scholar 

  52. Forrest MG. Adrenal diseases and steroids. Curr Opinion Pediatr 1990;2:775–785.

    Article  Google Scholar 

  53. Therrell BL Jr, Berenbaum SA, Manter-Kapanke V, et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics 1998;101:583–590.

    Article  PubMed  Google Scholar 

  54. New MI, Speiser PW. Genetics of adrenal steroid 21-hydroxylase deficiency. Endocr Rev 1986;7:331–349.

    PubMed  CAS  Google Scholar 

  55. Carmina E, Rosato F, Janni A, Rizzo M, Longo RA. Relative prevalence of different androgen excess disorders in 950 women referred because of clinical hyperandrogenism. J Clin Endocrinol Metab 2005, in press.

    Google Scholar 

  56. Azziz R, Sanchez LA, Knochenhauer ES, et al. Androgen excess in women: experience with over 1000 consecutive patients. J Clin Endocrinol Metab 2004;89:453–462.

    Article  PubMed  CAS  Google Scholar 

  57. Lucky AW, Rosenfield RL, McGuire J, Rudy S, Helke J. Adrenal androgen hyperresponsiveness to adrenocorticotropin in women with acne and/or hirsutism: adrenal enzyme defects and exaggerated adrenarche. J Clin Endocrinol Metab 1986;62:840–848.

    PubMed  CAS  Google Scholar 

  58. Moran C, Azziz R, Carmina E, et al. 21-hydroxylase deficient non-classic adrenal hyperplasia is a progressive disorder: a multicenter study. Am J Obstet Gynecol 2000;183:1468–1474.

    Article  PubMed  CAS  Google Scholar 

  59. Levine LS, Dupont BO, Lorenzen F, et al. Cryptic 21-hydroxylase deficiency in families of patients with classical congenital adrenal hyperplasia. J Clin Endocrinol Metab 1980;51:1316–1324.

    PubMed  CAS  Google Scholar 

  60. Speiser PW, New MI. Genotype and hormonal phenotype in nonclassical 21-hydroxylase deficiency. J Clin Endocrinol Metab 1987;64:86–91.

    PubMed  CAS  Google Scholar 

  61. Deneux C, Tardy V, Dib A, et al. Phenotype-genotype correlation in 56 women with nonclassical congenital adrenal hyperplasia resulting from 21-hydroxylase deficiency. J Clin Endocrinol Metab 2001;86:207–213.

    Article  PubMed  CAS  Google Scholar 

  62. Speiser PW, Serrat J, New MI, Gertner JM. Insulin insensitivity in adrenal hyperplasia resulting from nonclassical steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab 1992;75:1421–1424.

    Article  PubMed  CAS  Google Scholar 

  63. Saygili F, Oge A, Yilmaz C. Hyperinsulinemia and insulin insensitivity in women with nonclassical congenital adrenal hyperplasia resulting from 21-hydroxylase deficiency: the relationship between serum leptin levels and chronic hyperinsulinemia. Horm Res 2005;63:270–274.

    Article  PubMed  CAS  Google Scholar 

  64. Azziz R, Hincapie LA, Knochenhauer ES, Dewailly D, Fox L, Boots LR. Screening for 21-hydroxylase deficient nonclassic adrenal hyperplasia among hyperandrogenic women: a prospective study. Fertil Steril 1999;72:915–925.

    Article  PubMed  CAS  Google Scholar 

  65. Azziz R, Rafi A, Smith BR, Bradley EL, Zacur HA. On the origin of the elevated 17-hydroxyprogesterone levels after adrenal stimulation in hyperandrogenism. J Clin Endocrinol Metab 1990;70:431–436.

    PubMed  CAS  Google Scholar 

  66. Azziz R, Zacur HA. 21-Hydroxylase deficiency in female hyperandrogenism: Screening and Diagnosis. J Clin Endocrinol Metab 1989;69:577.

    PubMed  CAS  Google Scholar 

  67. Katz E, Scherzer WJ, Mansfield RJ, Adashi EY. Effect of systemic hyperandrogenism on the adrenal response to adrenocorticotropin hormone. Fertil Steril 1994;61(3):567–569.

    PubMed  CAS  Google Scholar 

  68. Fiet J, Gueux B, Gourmelen M, et al. Comparison of basal and adrenocorticotropin-stimulated plasma 21-desoxycortisol and 17-hydroxyprogesterone values as biological markers of late-onset adrenal hyperplasia. J Clin Endocrinol Metab 1988;66:659–667.

    PubMed  CAS  Google Scholar 

  69. Solyom J, Gacs G, Keszei K, et al. Detection of late-onset adrenal hyperplasia in girls with peripubertal virilization. Acta Endocrinol 1987;115:413–418.

    PubMed  CAS  Google Scholar 

  70. Kuttenn F, Couillin P, Girard F, et al. Late-onset adrenal hyperplasia in hirsutism. N Engl J Med 1985;313:224–231.

    Article  PubMed  CAS  Google Scholar 

  71. Huerta R, Dewailly D, Decanter C, Knochenhauer ES, Boots LR, Azziz R. 11-Beta-hydroxyandrostenedione and delta5-androstenediol as markers of adrenal androgen production in 21-hydroxylase deficient nonclassic adrenal hyperplasia. Fertil Steril 1999;72:996–1000.

    Article  PubMed  CAS  Google Scholar 

  72. New MI, Lorenzen F, Lerner AJ, et al. Genotyping steroid 21-hydroxylase deficiency: hormonal reference data. J Clin Endocrinol Metab 1983;57(2):320–326.

    PubMed  CAS  Google Scholar 

  73. Knochenhauer ES, Cortet-Rudelli C, Cunningham RD, Boots LR, Dewailly D, Azziz R. Heterozygote for 21-hydroxylase (21-OH) deficient classic adrenal hyperplasia (CAH) women are not at risk for hyperandrogenism. J Clin Endocrinol Metab 1997;82:479–485.

    Article  PubMed  CAS  Google Scholar 

  74. Dewailly D, Robert Y, Helin I, et al. Ovarian stromal hypertrophy in hyperandrogenic women. Clin Endocrinol 1994;14:557-556.

    Google Scholar 

  75. Hague WM, Adams J, Rodda C, et al. The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin Endocrinol 1990;33:501–510.

    Article  CAS  Google Scholar 

  76. Pache TD, Schadha S, Gooren LJG, et al. Ovarian morphology in long-term androgen-treated female to male transsexuals. A human model for the study of polycystic ovarian syndrome? Histopathology 1991;19:445–452.

    Article  PubMed  CAS  Google Scholar 

  77. Barnes RB, Rosenfield RL, Ehrmann DA, et al. Ovarian hyperandrogenism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 79:1328–1333.

    Google Scholar 

  78. Moran C, Azziz R, Carmina E, et al. Reproductive outcome of women with 21-hydroxylase deficient non-classic adrenal hyperplasia: a multicenter study (in preparation).

    Google Scholar 

  79. Feldman S, Billaud L, Thalabard JC, et al. Fertility in women with late-onset adrenal hyperplasia resulting from 21-hydroxylase deficiency. J Clin Endocrinol Metab 1992;74:635–639.

    Article  PubMed  CAS  Google Scholar 

  80. Speiser PW, Krochenhauer ES, Dewailly D, Frazetti R, Marcondes JA, Azziz R. A multicenter study of women with nonclassical congenital adrenal hyperplasia: relationship between genotype and phenotype. Mol Genet Metab 2000;71:527–534.

    Article  PubMed  CAS  Google Scholar 

  81. Forest MG, Betuel H, David M. Prenatal treatment in congenital adrenal hyperplasia resulting from 21-hydroxylase deficiency: Update 88 of the French Multicentric Study. Endocr Res 1989;15:277–301.

    Article  PubMed  CAS  Google Scholar 

  82. Azziz R, Markham S, Huth J, Smith B, Zacur HA. Long-term follow-up of hyperandrogenic women with adrenal 21-hydroxylase deficiency. American Fertility Society, No. P-144, 1988.

    Google Scholar 

  83. Spritzer P, Billaud L, Thalabard JC, et al. Cyproterone acetate versus hydrocortisone treatment in late-onset adrenal hyperplasia. J Clin Endocrinol Metab 1990;70:642–646.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Dewailly, D., Azziz, R. (2006). The Nonclassic Adrenal Hyperplasias. In: Azziz, R., Nestler, J.E., Dewailly, D. (eds) Androgen Excess Disorders in Women. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-179-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-179-6_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-663-4

  • Online ISBN: 978-1-59745-179-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics