Skip to main content

Androgens Throughout the Life of Women

  • Chapter
Androgen Excess Disorders in Women

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Androgens consist of 19 carbon steroids that are synthesized in endocrine tissues from cholesterol as substrate or via conversion from other androgens or precursor steroids in the periphery, including liver, gonads, and adrenals. The commonly studied androgens and androgen metabolites in the human include dehydroepiandrosterone (DHEA) and its metabolite dehydroepiandrosterone sulfate (DHEAS), androstenedi-one (A4), and testosterone and its 5α-reduced metabolite, the potent androgen 5α-dihydrotestosterone (DHT). Circulating levels of androgens are equally low in male and female children prior to adrenarche. During adrenarche, plasma levels of DHEA and DHEAS achieve adult levels at an earlier stage of development than do those of testosterone. Production of androgens in the human female occurs to varying extents as a function of age and physiological status. DHEA and DHEAS are primarily products of the adrenal zona reticularis, whereas A4 and testosterone are synthesized in both the ovary and adrenal; substantial quantities of testosterone arise from peripheral conversion from A4. Modest changes in circulating levels of testosterone occur during the ovarian cycle of women during the reproductive years, with the highest levels seen at mid-cycle; plasma levels of DHEA, DHEAS, and A4 show little change during the ovarian cycle. The suppression that occurs with oral contraceptive use is associated with reductions in plasma levels of androgens, including those produced by the adrenal. Circulating levels of testosterone and A4 increase during pregnancy, probably as a result of human chorionic gonadotropin stimulation of the ovary and increased protein binding. There is also increased production of adrenal androgens in pregnancy through unknown mechanisms, but because of the increased conversion of DHEAS to estrogen in the placenta, plasma levels of this steroid decline during pregnancy. Although the ovary is an important source of androgens in women, there seems to be little impact of menopause on circulating levels of A4 and testosterone. Striking reductions in plasma DHEA and DHEAS occur during aging in women, and these changes appear independent of ovarian status. The best evidence to date is suggestive of a selective deficiency in the Δ5 steroid pathway in the zona reticularis during aging, and this may be because of a loss of cells in this zone. Finally, estrogen treatment of postmenopausal women has not been shown to have consistent effects on the androgenic milieu of women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 269.00
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dharia SP, Slane A, Jian M, et al. Co-localization of P450c17 and cytochrome b5 in androgen synthesizing tissues of the human. Biol Reprod 2004;71:83–88.

    Article  PubMed  CAS  Google Scholar 

  2. Miller WL, Auchus RJ, Geller DH. The regulation of 17,20 lyase activity. Steroids 1997;62:133–142.

    Article  PubMed  CAS  Google Scholar 

  3. Cameron EHD, Jones T, Cones D, Anderson ABM, Griffiths K. Further studies on the relationship between C19-and C21-steroid synthesis in the human adrenal gland. J Endocrinol 1969;45:215–230.

    Article  PubMed  CAS  Google Scholar 

  4. Kennerson AR, McDonald DA, Adams JB. Dehydroepiandrosterone sulfotransferase localization in human adrenal glands: a light and electron microscopic study. J Clin Endocrinol Metab 1983;56:786–790.

    PubMed  CAS  Google Scholar 

  5. Endoh A, Kristiansen SB, Casson PR, Buster JE, Hornsby PJ. The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metab 1996;81:3558–3565.

    Article  PubMed  CAS  Google Scholar 

  6. Dean HJ, Winter HSD. Abnormalities of pubertal development. In: Collu R, Ducharme JR, Guyda HJ, ed. Pediatric Endocrinology, 2nd ed. New York: Raven Press, Ltd, 1989:331–366.

    Google Scholar 

  7. Dhom G. The prepuberal and puberal growth of the adrenal (adrenarche). Beitr Path Bd 1973;150:357–377.

    CAS  Google Scholar 

  8. Gell JS, Carr BR, Sasano H, et al. Adrenarche results from development of a 3β-hydroxysteroid dehydrogenase-deficient adrenal reticularis. J Clin Endocrinol Metab 1998;83:3695–3701.

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki T, Sasano H, Takeyama J, et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex:immunohistochemical studies. Clin Endocrinol 2000;53:739–747.

    Article  CAS  Google Scholar 

  10. Schiebinger RJ, Albertson BD, Cassorla FG, et al. The developmental changes in plasma adrenal androgens during infancy and adrenarche are associated with changing activities of adrenal microsomal 17-hydroxylase and 17,20-des-molase. J Clin Invest 1981;67:1177–1182.

    Article  PubMed  CAS  Google Scholar 

  11. Bongofiglio D, Garofalo C, Catalano S, et al. Low calcium intake is associated with decreased androgens and reduced bone age in premenarcheal girls in the last pubertal stages. J Bone Miner Metab 2004;22:64–70.

    Article  CAS  Google Scholar 

  12. Ibanez L, Potau N, Francois I, de Zegher F. Precocious pubarche, hyperinsulinism, and ovarian hyperandrogenism in girls: relation to reduced fetal growth. J Clin Endocrinol Metab 1998;84:3945–3949.

    Google Scholar 

  13. Korhonen P, Hyodynmaa E, Lenko H-L, Tammela O. Growth and adrenal androgen status at 7 years in very low birth weight survivors with and without brochopulmonary dysplasia. Arch Dis Child 2004;89:320–324.

    Article  PubMed  CAS  Google Scholar 

  14. Szathmari M, Vasarhelyi B, Tulassay T. Effect of low birth weight on adrenal steroids and carbohydrate metabolism in early adulthood. Horm Res 2001;55:172–178.

    Article  PubMed  CAS  Google Scholar 

  15. Vermeulen A. The hormonal activity of the postmenopausal ovary. J Clin Endocrinol Metab 1976;42:247–253.

    PubMed  CAS  Google Scholar 

  16. Liu CH, Laughlin GA, Fischer UG, Yen SSC. Marked attenuation of ultradian and circadian rhythms of dehydroepiandrosterone in postmenopausal women: evidence for a reduced 17,20-desmolase enzymatic activity. J Clin Endocrinol Metab 1990;71:900–906.

    PubMed  CAS  Google Scholar 

  17. Abraham GE. Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J Clin Endocrinol Metab 1974;39:340–346.

    PubMed  CAS  Google Scholar 

  18. Aiman J, Forney JP, Parker CR Jr. Androgen and estrogen secretion by normal and neoplastic ovaries in premenopausal women. Obstet Gynecol 1986;68:327–332.

    PubMed  CAS  Google Scholar 

  19. Fern M, Rose DP, Fern EB. Effect of oral contraceptives on plasma androgenic steroids and their precursors. Obstet Gynecol 1978;51:541–544.

    Article  PubMed  CAS  Google Scholar 

  20. Madden JD, Milewich L, Parker CR Jr, et al. The effect of oral contraceptive treatment on the serum concentration of dehydroisoandrosterone sulfate. Am J Obstet Gynecol 1978;132:380–384.

    PubMed  CAS  Google Scholar 

  21. Coenen CMH, Thomas CMG, Borm GF, Hollanders JMG, Rolland R. Changes in androgens during treatment with four low-dose contraceptives. Contraception 1996;53:171–176.

    Article  PubMed  CAS  Google Scholar 

  22. Thorneycroft IH, Stanczyk FZ, Bradshaw KD, et al. Effect of low-dose oral contraceptives on androgenic markers and acne. Contraception 1999;60:255–262.

    Article  PubMed  CAS  Google Scholar 

  23. Miller KK, Sesmilo G, Schiller A, et al. Androgen deficiency in women with hypopituitarism. J Clin Endocrinol Metab 2001;86:561–567.

    Article  PubMed  CAS  Google Scholar 

  24. Mizuno M, Lobotsky J, Lloyd CW, Kobayashi T, Murasawa Y. Plasma androstenedione and testosterone during pregnancy and in the newborn. J Clin Endocr 1968;28:1133–1142.

    PubMed  CAS  Google Scholar 

  25. Rivarola M, Forest MG, Migeon CJ. Testosterone, androstenedione, and dehydroeipandrosterone in plasma during pregnancy and at delivery: concentration and protein binding. J Clin Endocr 1968;28:34–40.

    PubMed  CAS  Google Scholar 

  26. Tulchinsky D. Adrenal androgens in pregnancy. In: Genazzani AR, Thijssen JHH, Siiteri PK, eds. Adrenal Androgens. New York: Raven Press, 1980:189–198.

    Google Scholar 

  27. Castracane VD, Stewart DR, Gimpel T, Overstreet JW, Lasley BL. Maternal serum androgens in human pregnancy: early increases within the cycle of conception. Human Reproduction 1998;13:460–464.

    Article  PubMed  CAS  Google Scholar 

  28. Siiteri PK, MacDonald PC. Placental estrogen biosynthesis during human pregnancy. J Clin Endocrinol Metab 1966;26:751–761.

    Article  PubMed  CAS  Google Scholar 

  29. Reyes FI, Boroditsky RS, Winter JS, Faiman C. Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. J Clin Endocrinol Metab 1974;38:612–617.

    PubMed  CAS  Google Scholar 

  30. Carlsen SM, Jacobsen G, Bjerve KS. Androgen levels in pregnant women decrease with increasing maternal age. Scand J Clin Lab Invest 2003;63:23–26.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Graubard BI, Klebanoff MA, et al. Maternal hormone levels among populations at high and low risk of testicular germ cell cancer. Brit J Cancer 2005;92:1787–1793.

    Article  PubMed  CAS  Google Scholar 

  32. Johnston CC, Hui SL, Witt RM, et al. Early menopausal changes in bone mass and sex steroids. J Clin Endocrinol Metab 1985;61:905–911.

    PubMed  CAS  Google Scholar 

  33. Tok EC, Ertunc D, Oz U, et al. The effect of circulating androgens on bone mineral density in postmenopausal women. Maturitas 2004;48:235–242.

    Article  PubMed  CAS  Google Scholar 

  34. Rannevik G, Carlstrom K, Jeppsson S, Bjerre B, L Svanberg. A prospective long-term study in women from pre-menopause to post-menopause: Changing profiles of gonadotrophins, oestrogens and androgens. Maturitas 1986;8:297–307.

    Article  PubMed  CAS  Google Scholar 

  35. Burger HG, Dudley EC, Cui J, Dennerstein L, Hopper JL. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate and sex hormone-binding globulin levels through the menopause transition. J Clin Endocrinol Metab 2000;85:2832–2838.

    Article  PubMed  CAS  Google Scholar 

  36. Abraham GE, Maroulis GB. Effect of exogenous estrogen on serum pregnenolone, cortisol, and androgens in postmenopausal women. Obstet Gynecol 1975;45:271–274.

    PubMed  CAS  Google Scholar 

  37. Casson PR, Elkind-Hirsh KE, Buster JE, et al. Effect of postmenopausal estrogen replacement on circulating androgens. Obstet Gynecol 1997;90:995–998.

    Article  PubMed  CAS  Google Scholar 

  38. Gower BA, Nyman L. Associations among oral estrogen use, free testosterone concentration, and lean body mass among postmenopausal women. J Clin Endocrinol Metab 2000;85:4476–4480.

    Article  PubMed  CAS  Google Scholar 

  39. Sluijmer AV, Heineman MJ, De Jong FH, Evers JLH. Endocrine activity of the postmenopausal ovary: The effects of pituitary down-regulation and oophorectomy. J Clin Endocrinol Metab 1995;80:2163–2167.

    Article  PubMed  CAS  Google Scholar 

  40. Laughlin G, Barrett-Connor E, Kritz-Silverstein D, von Muhlen D. Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: The Rancho Bernardo study. J Clin Endocrinol Metab 2000;85:645–651.

    Article  PubMed  CAS  Google Scholar 

  41. Davidson SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adult females: changes with age, menopause and oophorectomy. J Clin Endocrinol Metab 2005;90:3847–3853.

    Article  CAS  Google Scholar 

  42. Couzinet B, Meduri G, Lecce MG, et al. The postmenopausal ovary is not a major androgen-producing gland. J Clin Endocrinol Metab 2001;86:5060–5066.

    Article  PubMed  CAS  Google Scholar 

  43. Parker CR Jr, Slayden SM, Azziz R, et al. Effects of aging on adrenal function in the human: responsiveness and sensitivity of adrenal androgens and cortisol to adrenocorticotropin in premenopausal and postmenopausal women. J Clin Endocrinol Metab 2000;85:48–54.

    Article  PubMed  CAS  Google Scholar 

  44. Manson JM, Sammel MD, Freeman EW, Grisso JA. Racial differences in sex hormone levels in women approaching the transition to menopause. Fert Steril 2001;75:297–304.

    Article  CAS  Google Scholar 

  45. Vermeulen A, Deslypere JP, Schelfhout W, Verdonk L, Rubens R. Adrenocortical function in old age: response to acute adrenocorticotropin stimulation. J Clin Endocrinol Metab 1982;54:187–191.

    PubMed  CAS  Google Scholar 

  46. Parker CR Jr., Mixon RL, Brissie RM, Grizzle WE. Aging alters zonation in the adrenal cortex of men. J Clin Endocrinol Metab 1997;82:3898–3901.

    Article  PubMed  CAS  Google Scholar 

  47. Dharia S, Slane A, Jian M, et al. Effects of aging on cytochrome b5 expression in the human adrenal gland. J Clin Endocrinol Metab 2005;90:4357–4361.

    Article  PubMed  CAS  Google Scholar 

  48. Staton BA, Mixon RL, Dharia S, Brissie RM, Parker CR Jr. Is reduced cell size the mechanism for shrinkage of the adrenal zona reticularis in aging? Endocr Res 2004;30:529–534.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Parker, C.R. (2006). Androgens Throughout the Life of Women. In: Azziz, R., Nestler, J.E., Dewailly, D. (eds) Androgen Excess Disorders in Women. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-179-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-179-6_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-663-4

  • Online ISBN: 978-1-59745-179-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics