Skip to main content

Visualizing the Ultrastructures and Dynamics of Synapses by Single-Molecule Nanoscopy

  • Protocol
  • First Online:
Nanoscale Imaging of Synapses

Part of the book series: Neuromethods ((NM,volume 84))

Abstract

Nanoscopic imaging techniques provide a powerful set of tools for static and dynamic fluorescence microscopy below the diffraction limit of light. Among these super-resolution techniques, photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) are based on the detection of single fluorophores, whose signals are localized with great precision. The strength of single-molecule approaches lies in their high localization accuracy and their molecular specificity and in the development of multicolor approaches, three-dimensional imaging, and the quantification of absolute molecule numbers. These capabilities make PALM and STORM imaging ideally suited to visualize the ultrastructures of synapses, to track the movements of synaptic components, and to quantify the molecular plasticity at synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohen RS, Blomberg F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 74(1):181–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chen X, Vinade L, Leapman RD, Petersen JD, Nakagawa T, Phillips TM, Sheng M, Reese TS (2005) Mass of the postsynaptic density and enumeration of three key molecules. Proc Natl Acad Sci U S A 102(32):11551–11556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Trinidad JC, Thalhammer A, Specht CG, Lynn AJ, Baker PR, Schoepfer R, Burlingame AL (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7(4):684–696

    Article  CAS  PubMed  Google Scholar 

  4. Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana SR, Hanfelt J, Nakagawa T, Sheng M, Peng J (2006) Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 5(6):1158–1170

    Article  CAS  PubMed  Google Scholar 

  5. Okabe S (2007) Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 34(4):503–518

    Article  CAS  PubMed  Google Scholar 

  6. Triller A, Choquet D (2005) Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci 28(3):133–139

    Article  CAS  PubMed  Google Scholar 

  7. Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci U S A 99(21):13902–13907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rostaing P, Real E, Siksou L, Lechaire JP, Boudier T, Boeckers TM, Gertler F, Gundelfinger ED, Triller A, Marty S (2006) Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur J Neurosci 24(12):3463–3474

    Article  PubMed  Google Scholar 

  9. Valtschanoff JG, Weinberg RJ (2001) Laminar organization of the NMDA receptor complex within the postsynaptic density. J Neurosci 21(4):1211–1217

    CAS  PubMed  Google Scholar 

  10. Petersen JD, Chen X, Vinade L, Dosemeci A, Lisman JE, Reese TS (2003) Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J Neurosci 23(35):11270–11278

    CAS  PubMed  Google Scholar 

  11. Dani A, Huang B, Bergan J, Dulac C, Zhuang X (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68(5):843–856. doi:S0896-6273(10)00937-2 [pii] 10.1016/j.neuron.2010.11.021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, Leapman RD, Gainer H, Sheng M, Reese TS (2011) PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci 31(17):6329–6338. doi:31/17/6329 [pii] 10.1523/JNEUROSCI.5968-10.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S (2007) Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 27(26):6868–6877

    Article  CAS  PubMed  Google Scholar 

  14. Limbach C, Laue MM, Wang X, Hu B, Thiede N, Hultqvist G, Kilimann MW (2011) Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site. Proc Natl Acad Sci U S A 108(31):E392–E401. doi:1101707108 [pii] 10.1073/pnas.1101707108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23(3):569–582

    Article  CAS  PubMed  Google Scholar 

  16. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23(3):583–592

    Article  CAS  PubMed  Google Scholar 

  17. Kuriu T, Inoue A, Bito H, Sobue K, Okabe S (2006) Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci 26(29):7693–7706

    Article  CAS  PubMed  Google Scholar 

  18. Landis DM, Reese TS (1983) Cytoplasmic organization in cerebellar dendritic spines. J Cell Biol 97(4):1169–1178

    Article  CAS  PubMed  Google Scholar 

  19. Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8(7):1488–1500

    Article  CAS  PubMed  Google Scholar 

  20. Uchida N, Honjo Y, Johnson KR, Wheelock MJ, Takeichi M (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J Cell Biol 135(3):767–779

    Article  CAS  PubMed  Google Scholar 

  21. Aoki C, Miko I, Oviedo H, Mikeladze-Dvali T, Alexandre L, Sweeney N, Bredt DS (2001) Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102, and SAP-97 at postsynaptic, presynaptic, and nonsynaptic sites of adult and neonatal rat visual cortex. Synapse 40(4):239–257

    Article  CAS  PubMed  Google Scholar 

  22. DeGiorgis JA, Galbraith JA, Dosemeci A, Chen X, Reese TS (2006) Distribution of the scaffolding proteins PSD-95, PSD-93, and SAP97 in isolated PSDs. Brain Cell Biol 35(4–6):239–250

    Article  CAS  PubMed  Google Scholar 

  23. Waites CL, Specht CG, Hartel K, Leal-Ortiz S, Genoux D, Li D, Drisdel RC, Jeyifous O, Cheyne JE, Green WN, Montgomery JM, Garner CC (2009) Synaptic SAP97 isoforms regulate AMPA receptor dynamics and access to presynaptic glutamate. J Neurosci 29(14):4332–4345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gold MG, Stengel F, Nygren PJ, Weisbrod CR, Bruce JE, Robinson CV, Barford D, Scott JD (2011) Architecture and dynamics of an A-kinase anchoring protein 79 (AKAP79) signaling complex. Proc Natl Acad Sci U S A 108(16):6426–6431. doi:1014400108 [pii] 10.1073/pnas.1014400108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284(5411):162–166

    Article  CAS  PubMed  Google Scholar 

  26. Dosemeci A, Tao-Cheng JH, Vinade L, Winters CA, Pozzo-Miller L, Reese TS (2001) Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci U S A 98(18):10428–10432. doi:10.1073/pnas.181336998 181336998 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS (2005) Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45(2):269–277

    Article  CAS  PubMed  Google Scholar 

  28. Opazo P, Labrecque S, Tigaret CM, Frouin A, Wiseman PW, De Koninck P, Choquet D (2010) CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron 67(2):239–252. doi:S0896-6273(10)00465-4 [pii] 10.1016/j.neuron.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  29. Born M, Wolf E (2002) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge University Press, Cambridge

    Google Scholar 

  30. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    Article  CAS  PubMed  Google Scholar 

  31. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058. doi:S0092-8674(10)01420-0 [pii] 10.1016/j.cell.2010.12.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367. doi:10.1146/annurev.physchem.012809.103444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086. doi:0406877102 [pii] 10.1073/pnas.0406877102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy–a concept for optical resolution improvement. J Opt Soc Am A Opt Image Sci Vis 19(8):1599–1609

    Article  PubMed  Google Scholar 

  35. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782. doi:12352 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210. doi:97/15/8206 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  38. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:nmeth929 [pii] 10.1038/nmeth929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Izeddin I, Specht CG, Lelek M, Darzacq X, Triller A, Zimmer C, Dahan M (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One 6(1):e15611. doi:10.1371/journal.pone.0015611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shannon CE (1949) Communication in the presence of noise. Proc Inst Rad Eng 37(1):10–21

    Google Scholar 

  42. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19(11):555–565. doi:S0962-8924(09)00199-8 [pii] 10.1016/j.tcb.2009.09.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127(11):3801–3806. doi:10.1021/ja044686x

    Article  CAS  PubMed  Google Scholar 

  44. Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94(10):108101

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036. doi:nmeth.1768 [pii] 10.1038/nmeth.1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7(9):717–719. doi:nmeth.1489 [pii] 10.1038/nmeth.1489

    Article  CAS  PubMed  Google Scholar 

  47. Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508. doi:nmeth.1605 [pii] 10.1038/nmeth.1605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8(12):1047–1049. doi:nmeth.1744 [pii] 10.1038/nmeth.1744

    Article  PubMed  Google Scholar 

  49. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813. doi:1153529 [pii] 10.1126/science.1153529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ram S, Prabhat P, Chao J, Ward ES, Ober RJ (2008) High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys J 95(12):6025–6043. doi:biophysj.108.140392 [pii] 10.1529/biophysj.108.140392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106(9):3125–3130. doi:0813131106 [pii] 10.1073/pnas.0813131106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Thompson MA, Lew MD, Badieirostami M, Moerner WE (2010) Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Lett 10(1):211–218. doi:10.1021/nl903295p

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Izeddin I, El Beheiry M, Andilla J, Ciepielewski D, Darzacq X, Dahan M (2012) PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt Express 20(5):4957–4967. doi:227664 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    Article  CAS  PubMed  Google Scholar 

  55. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157. doi:nmeth.1176 [pii] 10.1038/nmeth.1176

    Article  CAS  PubMed  Google Scholar 

  56. Triller A, Choquet D (2008) New concepts in synaptic biology derived from single-molecule imaging. Neuron 59(3):359–374

    Article  CAS  PubMed  Google Scholar 

  57. English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J (2011) Single-molecule investigations of the stringent response machinery in living bacterial cells. Proc Natl Acad Sci U S A 108(31):E365–E373. doi:1102255108 [pii] 10.1073/pnas.1102255108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4):2378–2388. doi:S0006-3495(01)75884-5 [pii] 10.1016/S0006-3495(01)75884-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Ober RJ, Ram S, Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys J 86(2):1185–1200. doi:S0006-3495(04)74193-4 [pii] 10.1016/S0006-3495(04)74193-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340. doi:nmeth0510-339 [pii] 10.1038/nmeth0510-339

    Article  CAS  PubMed  Google Scholar 

  61. Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6(10):689–690. doi:nmeth1009-689 [pii] 10.1038/nmeth1009-689

    Article  CAS  PubMed  Google Scholar 

  62. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377–381. doi:nmeth.1447 [pii] 10.1038/nmeth.1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high- density super-resolution microscopy. Nat Methods 8(4):279–280. doi:nmeth0411-279 [pii] 10.1038/nmeth0411-279

    Article  CAS  PubMed  Google Scholar 

  64. Izeddin I, Boulanger J, Racine V, Specht CG, Kechkar A, Nair D, Triller A, Choquet D, Dahan M, Sibarita JB (2012) Wavelet analysis for single molecule localization microscopy. Opt Express 20(3):2081–2095. doi:226621 [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375. doi:nmeth.1449 [pii] 10.1038/nmeth.1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wolter S, Schuttpelz M, Tscherepanow M, Van de Linde S, Heilemann M, Sauer M (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22. doi:JMI3287 [pii] 10.1111/j.1365-2818.2009.03287.x

    Article  CAS  PubMed  Google Scholar 

  67. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753. doi:1146598 [pii] 10.1126/science.1146598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Masugi-Tokita M, Shigemoto R (2007) High-resolution quantitative visualization of glutamate and GABA receptors at central synapses. Curr Opin Neurobiol 17(3):387–393

    Article  CAS  PubMed  Google Scholar 

  69. Tarusawa E, Matsui K, Budisantoso T, Molnar E, Watanabe M, Matsui M, Fukazawa Y, Shigemoto R (2009) Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses. J Neurosci 29(41):12896–12908. doi:29/41/12896 [pii] 10.1523/JNEUROSCI.6160-08.2009

    Article  CAS  PubMed  Google Scholar 

  70. Bard L, Groc L (2011) Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor. Mol Cell Neurosci 48(4):298–307. doi:S1044-7431(11)00115-1 [pii] 10.1016/j.mcn.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  71. Czondor K, Mondin M, Garcia M, Heine M, Frischknecht R, Choquet D, Sibarita JB, Thoumine OR (2012) Unified quantitative model of AMPA receptor trafficking at synapses. Proc Natl Acad Sci U S A 109(9):3522–3527. doi:1109818109 [pii] 10.1073/pnas.1109818109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605–607

    Article  CAS  PubMed Central  PubMed  Google Scholar��

  73. Fifkova E, Delay RJ (1982) Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J Cell Biol 95(1):345–350

    Article  CAS  PubMed  Google Scholar 

  74. Hotulainen P, Llano O, Smirnov S, Tanhuanpaa K, Faix J, Rivera C, Lappalainen P (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185(2):323–339. doi:jcb.200809046 [pii] 10.1083/jcb.200809046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57(5):719–729

    Article  CAS  PubMed  Google Scholar 

  76. Frost NA, Kerr JM, Lu HE, Blanpied TA (2010) A network of networks: cytoskeletal control of compartmentalized function within dendritic spines. Curr Opin Neurobiol 20(5):578–587. doi:S0959-4388(10)00106-6 [pii] 10.1016/j.conb.2010.06.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5(3):239–246

    Article  CAS  PubMed  Google Scholar 

  78. Wang XB, Yang Y, Zhou Q (2007) Independent expression of synaptic and morphological plasticity associated with long-term depression. J Neurosci 27(45):12419–12429

    Article  CAS  PubMed  Google Scholar 

  79. Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7(10):1104–1112

    Article  CAS  PubMed  Google Scholar 

  80. Rust MB, Gurniak CB, Renner M, Vara H, Morando L, Gorlich A, Sassoe-Pognetto M, Banchaabouchi MA, Giustetto M, Triller A, Choquet D, Witke W (2010) Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J 29(11):1889–1902. doi:emboj201072 [pii] 10.1038/emboj.2010.72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12(7):2685–2705

    CAS  PubMed  Google Scholar 

  82. Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3(2):383–388

    CAS  PubMed  Google Scholar 

  83. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353

    Article  CAS  PubMed  Google Scholar 

  84. Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21(1):165–176. doi:E09-07-0596 [pii] 10.1091/mbc.E09-07-0596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9(2):185–188. doi:nmeth.1841 [pii] 10.1038/nmeth.1841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Tatavarty V, Kim EJ, Rodionov V, Yu J (2009) Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS One 4(11):e7724

    Article  PubMed Central  PubMed  Google Scholar 

  87. Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67(1):86–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Berning S, Willig KI, Steffens H, Dibaj P, Hell SW (2012) Nanoscopy in a living mouse brain. Science 335(6068):551. doi:335/6068/551 [pii] 10.1126/science.1215369

    Article  CAS  PubMed  Google Scholar 

  89. Urban NT, Willig KI, Hell SW, Nagerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101(5):1277–1284. doi:S0006-3495(11)00885-X [pii] 10.1016/j.bpj.2011.07.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975. doi:nmeth.1704 [pii] 10.1038/nmeth.1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One 6(7):e22678. doi:10.1371/journal.pone.0022678 PONE-D-11-04436 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Sugiyama Y, Kawabata I, Sobue K, Okabe S (2005) Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat Methods 2(9):677–684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kimberly Gerrow and Nadine Schibille for their comments on the chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Specht, C.G., Izeddin, I., Dahan, M. (2014). Visualizing the Ultrastructures and Dynamics of Synapses by Single-Molecule Nanoscopy. In: Nägerl, U., Triller, A. (eds) Nanoscale Imaging of Synapses. Neuromethods, vol 84. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9179-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9179-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9178-1

  • Online ISBN: 978-1-4614-9179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics