Skip to main content

High-Throughput RNA-HCR-FISH Detection of Endogenous Pre-mRNA Splice Variants

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2784))

  • 545 Accesses

Abstract

RNA-fluorescence in situ hybridization (RNA-FISH) is an essential and widely used tool for visualizing RNA molecules in intact cells. Recent advances have increased RNA-FISH sensitivity, signal detection efficiency, and throughput. However, detection of endogenous mRNA splice variants has been challenging due to the limits of visualization of RNA-FISH fluorescence signals and due to the limited number of RNA-FISH probes per target. HiFENS (high-throughput FISH detection of endogenous pre-mRNA splicing isoforms) is a method that enables visualization and relative quantification of mRNA splice variants at single-cell resolution in an automated high-throughput manner. HiFENS incorporates HCR (hybridization chain reaction) signal amplification strategies to enhance the fluorescence signal generated by low abundance transcripts or a small number of FISH probes targeting short stretches of RNA, such as single exons. The technique offers a significant advance in high-throughput FISH-based RNA detection and provides a powerful tool that can be used as a readout in functional genomics screens to discover and dissect cellular pathways regulating gene expression and alternative pre-mRNA splicing events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 189.00
Price excludes VAT (USA)
Hardcover Book
USD 249.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le P, Ahmed N, Yeo GW (2022) Illuminating RNA biology through imaging. Nat Cell Biol 24(6):815–824

    Article  CAS  PubMed  Google Scholar 

  2. Tingey M et al (2022) Technologies enabling single-molecule super-resolution imaging of mRNA. Cells-Basel 11(19)

    Google Scholar 

  3. Xia C et al (2019) Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci U S A 116(39):19490–19499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weil TT, Parton RM, Davis I (2010) Making the message clear: visualizing mRNA localization. Trends Cell Biol 20(7):380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engel KL et al (2020) Mechanisms and consequences of subcellular RNA localization across diverse cell types. Traffic 21(6):404–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levitin HM, Yuan J, Sims PA (2018) Single-cell transcriptomic analysis of tumor heterogeneity. Trends Cancer 4(4):264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilkinson ME, Charenton C, Nagai K (2020) RNA splicing by the spliceosome. Annu Rev Biochem 89:359–388

    Article  CAS  PubMed  Google Scholar 

  8. Pan Q et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415

    Article  CAS  PubMed  Google Scholar 

  9. Scotti MM, Swanson MS (2016) RNA mis-splicing in disease. Nat Rev Genet 17(1):19–32

    Article  CAS  PubMed  Google Scholar 

  10. Stanley RF, Abdel-Wahab O (2022) Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat Cancer 3(5):536–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren P et al (2021) Alternative splicing: a new cause and potential therapeutic target in autoimmune disease. Front Immunol 12:713540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shilo A, Pegoraro G, Misteli T (2022) HiFENS: high-throughput FISH detection of endogenous pre-mRNA splicing isoforms. Nucleic Acids Res 50(22):e130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi HMT et al (2018) Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145(12)

    Google Scholar 

  14. Warzecha CC et al (2009) ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 33(5):591–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lundholt BK, Scudder KM, Pagliaro L (2003) A simple technique for reducing edge effect in cell-based assays. J Biomol Screen 8(5):566–570

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Misteli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shilo, A., Pegoraro, G., Misteli, T. (2024). High-Throughput RNA-HCR-FISH Detection of Endogenous Pre-mRNA Splice Variants. In: Haimovich, G. (eds) Fluorescence In Situ Hybridization (FISH). Methods in Molecular Biology, vol 2784. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3766-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3766-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3765-4

  • Online ISBN: 978-1-0716-3766-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics