Skip to main content

Reverse Genetics of Dengue Virus

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Abstract

Dengue virus (DENV) is one of the most important and widespread arthropod-borne viruses, causing millions of infections over the years. Considering its epidemiological importance, efforts have been directed towards understanding various aspects of DENV biology, which have been facilitated by the development of different molecular strategies for engineering viral genomes, such as reverse genetics approaches. Reverse genetic systems are a powerful tool for investigating virus–host interaction, for vaccine development, and for high-throughput screening of antiviral compounds. However, stable manipulation of DENV genomes is a major molecular challenge, especially when using conventional cloning systems. To circumvent this issue, we describe a simple and efficient yeast-based reverse genetics system to recover infectious DENV clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harapan H, Michie A, Sasmono RT, Imrie A (2020) Dengue: a minireview. Viruses 12(8):829. https://doi.org/10.3390/v12080829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. International Committee on Taxonomy of Viruses-ICTV (2022) https://ictv.global/taxonomy/

  3. Diamond MS, Pierson TC (2015) Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell 162(3):488–492. https://doi.org/10.1016/j.cell.2015.07.005

    Article  CAS  Google Scholar 

  4. World Health Organization- WHO (2022) https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

  5. Bhatt P, Sabeena SP, Varma M, Arunkumar G (2021) Current understanding of the pathogenesis of dengue virus infection. Curr Microbiol 78(1):17–32. https://doi.org/10.1007/s00284-020-02284-w

    Article  CAS  PubMed  Google Scholar 

  6. Bell SM, Katzelnick L, Bedford T (2019) Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. elife 8:e42496. https://doi.org/10.7554/eLife.42496

    Article  PubMed  PubMed Central  Google Scholar 

  7. Halstead SB (1979) In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 140:527–533. https://doi.org/10.1093/infdis/140.4.527

    Article  CAS  Google Scholar 

  8. Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108(5):717–725. https://doi.org/10.1016/s0092-8674(02)00660-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gebhard LG, Filomatori CV, Gamarnik AV (2011) Functional RNA elements in the dengue virus genome. Viruses 3:1739–1756. https://doi.org/10.3390/v3091739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK (2020) Challenges in dengue vaccines development: pre-existing infections and cross-reactivity. Front Immunol 11:1055. https://doi.org/10.3389/fimmu.2020.01055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang W-H, Urbina AN, Lin C-Y, Yang Z-S, Assavalapsakul W, Thitithanyanont A, Po-Liang L, Chen Y-H, Wang S-F (2021) Targets and strategies for vaccine development against dengue viruses. Biomed Pharmacother 144:112304. https://doi.org/10.1016/j.biopha.2021.112304

    Article  CAS  PubMed  Google Scholar 

  12. Ward R, Davidson AD (2008) Reverse genetics and the study of dengue virus. Futur Virol 3(3):279–290. https://doi.org/10.2217/17460794.3.3.279

    Article  CAS  Google Scholar 

  13. Perez DR (2017) Preface. In: Perez DR (ed) Reverse genetics of RNA viruses: methods and protocols, Methods in molecular biology, vol 1602. © Springer Science+Business Media LLC. https://doi.org/10.1007/978-1-4939-6964-7_3

    Chapter  Google Scholar 

  14. Bhat AI, Rao GP (2020) Development of infectious clone of virus. In: Characterization of plant viruses, Springer protocols handbooks. Humana, New York. https://doi.org/10.1007/978-1-0716-0334-5_46

    Chapter  Google Scholar 

  15. Stobart CC, Moore M (2014) RNA virus reverse genetics and vaccine design. Viruses 6(7):2531–2550. https://doi.org/10.3390/v6072531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santos JJ, Cordeiro MT, Bertani GR, Marques ET, Gil LH (2013) Construction and characterization of a complete reverse genetics system of dengue virus type 3. Mem Inst Oswaldo Cruz 108(8):983–991. https://doi.org/10.1590/0074-0276130298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santos JJ, Cordeiro MT, Bertani GR, Marques ET, Gil LH (2014) A two-plasmid strategy for engineering a dengue virus type 3 infectious clone from primary Brazilian isolate. An Acad Bras Cienc 86(4):1749–1759. https://doi.org/10.1590/0001-3765201420130332

    Article  CAS  PubMed  Google Scholar 

  18. Santos JJ, Magalhães T, Silva Junior JV, Silva AN, Cordeiro MT, Gil LH (2015) Full-length infectious clone of a low passage dengue virus serotype 2 from Brazil. Mem Inst Oswaldo Cruz 110(5):677–683. https://doi.org/10.1590/0074-02760150053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Usme-Ciro JA, Lopera JA, Enjuanes L, Almazán F, Gallego-Gomez JC (2014) Development of a novel DNA-launched dengue virus type 2 infectious clone assembled in a bacterial artificial chromosome. Virus Res 180:12–22. https://doi.org/10.1016/j.virusres.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  20. Pu SY, Wu RH, Yang CC, Jao TM, Tsai MH, Wang JC, Lin HM, Chao YS, Yueh A (2011) Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol 85(6):2927–2941. https://doi.org/10.1128/JVI.01986-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aubry F, Nougairède A, Gould EA, de Lamballerie X (2015) Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antivir Res 114:67–85. https://doi.org/10.1016/j.antiviral.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  22. Polo S, Ketner G, Levis R, Falgout B (1997) Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. J Virol 71(7):5366–5374. https://doi.org/10.1128/JVI.71.7.5366-5374.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sriburi R, Keelapang P, Duangchinda T, Pruksakorn S, Maneekarn N, Malasit P, Sittisombut N (2001) Construction of infectious dengue 2 virus cDNA clones using high copy number plasmid. J Virol Methods 92(1):71–82. https://doi.org/10.1016/s0166-0934(00)00277-9

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki R, de Borba L, Duarte dos Santos CN, Mason PW (2007) Construction of an infectious cDNA clone for a Brazilian prototype strain of dengue virus type 1: characterization of a temperature-sensitive mutation in NS1. Virology 362(2):374–383. https://doi.org/10.1016/j.virol.2006.11.026

    Article  CAS  PubMed  Google Scholar 

  25. Kapoor M, Zhang L, Mohan PM, Padmanabhan R (1995) Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene 162(2):175–180. https://doi.org/10.1016/0378-1119(95)00332-z

    Article  CAS  PubMed  Google Scholar 

  26. Tamura T, Zhang J, Madan V, Biswas A, Schwoerer MP, Cafiero TR, Heller BL, Wang W, Ploss A (2022) Generation and characterization of genetically and antigenically diverse infectious clones of dengue virus serotypes 1-4 Emerg. Microbes Infect 11(1):227–239. https://doi.org/10.1080/22221751.2021.2021808

    Article  CAS  Google Scholar 

  27. Blaney JE Jr, Hanson CT, Firestone CY, Hanley KA, Murphy BR, Whitehead SS (2004) Genetically modified, live attenuated dengue virus type 3 vaccine candidates. Am J Trop Med Hyg 71(6):811–821

    Article  CAS  PubMed  Google Scholar 

  28. Gebhard LG, Iglesias NG, Byk LA, Filomatori CV, De Maio FA, Gamarnik AV (2016) A proline-rich N-terminal region of the dengue virus NS3 is crucial for infectious particle production. J Virol 90(11):5451–5461. https://doi.org/10.1128/JVI.00206-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matusan AE, Pryor MJ, Davidson AD, Wright PJ (2001) Mutagenesis of the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. J Virol 75(20):9633–9643. https://doi.org/10.1128/JVI.75.20.9633-9643.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silveira GF, Strottmann DM, de Borba L, Mansur DS, Zanchin NI, Bordignon J, dos Santos CN (2016) Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response. Clin Exp Immunol 183(1):114–128. https://doi.org/10.1111/cei.12701

    Article  CAS  PubMed  Google Scholar 

  31. Duan X, Lu X, Li J, Liu Y (2008) Novel binding between pre-membrane protein and vacuolar ATPase is required for efficient dengue virus secretion. Biochem Biophys Res Commun 373(2):319–324. https://doi.org/10.1016/j.bbrc.2008.06.041

    Article  CAS  PubMed  Google Scholar 

  32. Tumban E, Mitzel DN, Maes NE, Hanson CT, Whitehead SS, Hanley KA (2011) Replacement of the 3′ untranslated variable region of mosquito-borne dengue virus with that of tick-borne Langat virus does not alter vector specificity. J Gen Virol 92(Pt 4):841–848. https://doi.org/10.1099/vir.0.026997-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schoggins JW, Dorner M, Feulner M, Imanaka N, Murphy MY, Ploss A, Rice CM (2012) Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proc Natl Acad Sci U S A 109(36):14610–14615. https://doi.org/10.1073/pnas.1212379109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bui TT, Moi ML, Nabeshima T, Takemura T, Nguyen TT, Nguyen LN, Pham HTT, Nguyen TTT, Manh DH, Dumre SP, Mizukami S, Hirayama K, Tajima S, Le MTQ, Aoyagi K, Hasebe F, Morita K (2018) A single amino acid substitution in the NS4B protein of Dengue virus confers enhanced virus growth and fitness in human cells in vitro through IFN-dependent host response. J Gen Virol 99(8):1044–1057. https://doi.org/10.1099/jgv.0.001092

    Article  CAS  PubMed  Google Scholar 

  35. Qing M, Zou G, Wang QY, Xu HY, Dong H, Yuan Z, Shi PY (2010) Characterization of dengue virus resistance to brequinar in cell culture. Antimicrob Agents Chemother 54(9):3686–3695. https://doi.org/10.1128/AAC.00561-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li LH, Kaptein SJF, Schmid MA, Zmurko J, Leyssen P, Neyts J, Dallmeier K (2020) A dengue type 2 reporter virus assay amenable to high-throughput screening. Antivir Res 183:104929. https://doi.org/10.1016/j.antiviral.2020.104929

    Article  CAS  PubMed  Google Scholar 

  37. Durbin AP, Kirkpatrick BD, Pierce KK, Elwood D, Larsson CJ, Lindow JC, Tibery C, Sabundayo BP, Shaffer D, Talaat KR, Hynes NA, Wanionek K, Carmolli MP, Luke CJ, Murphy BR, Subbarao K, Whitehead SS (2013) A single dose of any of four different live attenuated tetravalent dengue vaccines is safe and immunogenic in flavivirus-naive adults: a randomized, double-blind clinical trial. J Infect Dis 207(6):957–965. https://doi.org/10.1093/infdis/jis936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kirkpatrick BD, Durbin AP, Pierce KK, Carmolli MP, Tibery CM, Grier PL, Hynes N, Diehl SA, Elwood D, Jarvis AP, Sabundayo BP, Lyon CE, Larsson CJ, Jo M, Lovchik JM, Luke CJ, Walsh MC, Fraser EA, Subbarao K, Whitehead SS (2015) Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. J Infect Dis 212(5):702–710. https://doi.org/10.1093/infdis/jiv082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rivera L, Biswal S, Sáez-Llorens X, Reynales H, López-Medina E, Borja-Tabora C, Bravo L, Sirivichayakul C, Kosalaraksa P, Martinez Vargas L, Yu D, Watanaveeradej V, Espinoza F, Dietze R, Fernando L, Wickramasinghe P, Duarte Moreira E Jr, Fernando AD, Gunasekera D, Luz K, Venâncio da Cunha R, Rauscher M, Zent O, Liu M, Hoffman E, LeFevre I, Tricou V, Wallace D, Alera MT, Borkowski A, TIDES study group (2021) Three years efficacy and safety of Takeda’s dengue vaccine candidate (TAK-003). Clin Infect Dis 4:ciab864. https://doi.org/10.1093/cid/ciab864

    Article  Google Scholar 

  40. Hou J, Ye W, Chen J (2022) Current development and challenges of tetravalent live-attenuated dengue vaccines. Front Immunol 13:840104. https://doi.org/10.3389/fimmu.2022.840104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122(1):19–27. https://doi.org/10.1093/genetics/122.1.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gietz RD, Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):1–4. https://doi.org/10.1038/nprot.2007.17

    Article  CAS  PubMed  Google Scholar 

  43. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, vol 2. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Helena Vega Gonzales Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Silva Júnior, J.V.J., da Silva, A.N.M.R., da Silva Santos, J.J., Gil, L.H.V.G. (2024). Reverse Genetics of Dengue Virus. In: Pérez, D.R. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 2733. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3533-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3533-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3532-2

  • Online ISBN: 978-1-0716-3533-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics