Skip to main content

BaseScope™ Approach to Visualize Alternative Splice Variants in Tissue

  • Protocol
  • First Online:
Alternative Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2537))

  • 1730 Accesses

Abstract

Defining the cell-specific alternative splicing landscape in complex tissues is an important goal to gain functional insights. Deep-sequencing techniques coupled to genetic strategies for cell identification has provided important cues on cell-specific exon usage in complex tissues like the nervous system. BaseScope™ has emerged as a powerful and highly sensitive alternative to in situ hybridization to determine exon composition in tissue with spatial and morphological context. In this protocol, we will review how BaseScope was utilized to detect the e37a-Cacna1b splice variant of the presynaptic calcium channel CaV2.2 or N-type. This splice variant arises from a pair of mutually exclusive exons (e37a and e37b). E37a-Cacna1b is heavily underrepresented relative to e37b-Cacna1b and both exons share 60% of their sequence. By using BaseScope™, we were able to discover that e37a-Cacna1b is expressed in excitatory pyramidal neurons of hippocampus and cortex, as well as motor neurons of the ventral horn of the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 249.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18:437

    Article  CAS  Google Scholar 

  2. Rodriguez JM, Pozo F, di Domenico T, Vazquez J, Tress ML (2020) An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput Biol 16:e1008287

    Article  CAS  Google Scholar 

  3. Ule J, Blencowe BJ (2019) Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell 76:329–345

    Article  CAS  Google Scholar 

  4. Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:291–323

    Article  CAS  Google Scholar 

  5. Lipscombe D, Lopez Soto EJ (2019) Alternative splicing of neuronal genes: new mechanisms and new therapies. Curr Opin Neurobiol 57:26–31

    Article  CAS  Google Scholar 

  6. Lipscombe D, Andrade A, Allen SE (2013) Alternative splicing: functional diversity among voltage-gated calcium channels and behavioral consequences. Biochim Biophys Acta 1828:1522–1529

    Article  CAS  Google Scholar 

  7. Grabowski PJ, Black DL (2001) Alternative RNA splicing in the nervous system. Prog Neurobiol 65:289–308

    Article  CAS  Google Scholar 

  8. Lee CJ, Irizarry K (2003) Alternative splicing in the nervous system: an emerging source of diversity and regulation. Biol Psychiatry 54:771–776

    Article  CAS  Google Scholar 

  9. Raj B, Blencowe BJ (2015) Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron 87:14–27

    Article  CAS  Google Scholar 

  10. Arzalluz-Luque Á, Conesa A (2018) Single-cell RNAseq for the study of isoforms—how is that possible. Genome Biol 19:1–19

    Article  Google Scholar 

  11. Bao S, Moakley DF, Zhang C (2019) The splicing code goes deep. Cell 176:414–416

    Article  CAS  Google Scholar 

  12. Feng H, Moakley DF, Chen S, McKenzie MG, Menon V, Zhang C (2021) Complexity and graded regulation of neuronal cell type-specific alternative splicing revealed by single-cell RNA sequencing. bioRxiv

    Google Scholar 

  13. Weyn-Vanhentenryck SM, Feng H, Ustianenko D, Duffié R, Yan Q, Jacko M, Martinez JC, Goodwin M, Zhang X, Hengst U, Lomvardas S, Swanson MS, Zhang C (2018) Precise temporal regulation of alternative splicing during neural development. Nat Commun 9:2189

    Article  Google Scholar 

  14. Guo X, Zhao Y, Nguyen H, Liu T, Wang Z, Lou H (2018) Quantitative analysis of alternative Pre-mRNA splicing in mouse brain sections using RNA in situ hybridization assay. J Vis Exp

    Google Scholar 

  15. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14:22–29

    Article  CAS  Google Scholar 

  16. Wang Z, Portier BP, Gruver AM, Bui S, Wang H, Su N, Vo H-T, Ma X-J, Luo Y, Budd GT (2013) Automated quantitative RNA in situ hybridization for resolution of equivocal and heterogeneous ERBB2 (HER2) status in invasive breast carcinoma. J Mol Diagn 15:210–219

    Article  CAS  Google Scholar 

  17. Nanou E, Catterall WA (2018) Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98:466–481

    Article  CAS  Google Scholar 

  18. Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T (2001) Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 20:2349–2356

    Article  CAS  Google Scholar 

  19. Kim C, Jeon D, Kim YH, Lee CJ, Kim H, Shin HS (2009) Deletion of N-type Ca(2+) channel Ca(v)2.2 results in hyperaggressive behaviors in mice. J Biol Chem 284:2738–2745

    Article  CAS  Google Scholar 

  20. Zamponi GW (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 15:19–34

    Article  CAS  Google Scholar 

  21. Lipscombe D, Allen SE, Toro CP (2013) Control of neuronal voltage-gated calcium ion channels from RNA to protein. Trends Neurosci 36:598–609

    Article  CAS  Google Scholar 

  22. Raingo J, Castiglioni AJ, Lipscombe D (2007) Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci 10:285–292

    Article  CAS  Google Scholar 

  23. Andrade A, Denome S, Jiang YQ, Marangoudakis S, Lipscombe D (2010) Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing. Nat Neurosci 13:1249–1256

    Article  CAS  Google Scholar 

  24. Jiang YQ, Andrade A, Lipscombe D (2013) Spinal morphine but not ziconotide or gabapentin analgesia is affected by alternative splicing of voltage-gated calcium channel CaV2.2 pre-mRNA. Mol Pain 9:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gandini MA, Souza IA, Raval D, Xu J, Pan YX, Zamponi GW (2019) Differential regulation of Cav2.2 channel exon 37 variants by alternatively spliced μ-opioid receptors. Mol Brain 12:98

    Article  CAS  Google Scholar 

  26. Bunda A, LaCarubba B, Bertolino M, Akiki M, Bath K, Lopez-Soto J, Lipscombe D, Andrade A (2019) Cacna1b alternative splicing impacts excitatory neurotransmission and is linked to behavioral responses to aversive stimuli. Mol Brain 12:81

    Article  Google Scholar 

  27. Bell TJ, Thaler C, Castiglioni AJ, Helton TD, Lipscombe D (2004) Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 41:127–138

    Article  CAS  Google Scholar 

  28. Castiglioni AJ, Raingo J, Lipscombe D (2006) Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J Physiol 576:119–134

    Article  CAS  Google Scholar 

  29. López Soto EJ, Lipscombe D (2020) Cell-specific exon methylation and CTCF binding in neurons regulate calcium ion channel splicing and function. eLife 9:e54879

    Article  Google Scholar 

  30. Bunda A, LaCarubba B, Akiki M, Andrade A (2019) Tissue- and cell-specific expression of a splice variant in the II-III cytoplasmic loop of Cacna1b. FEBS Open Bio 9:1603–1616

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIMH grant R00-MH099405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bunda, A., Andrade, A. (2022). BaseScope™ Approach to Visualize Alternative Splice Variants in Tissue. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics