Skip to main content

Application of Immunohistochemistry in Papillary Thyroid Carcinoma

  • Protocol
  • First Online:
Papillary Thyroid Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2534))

Abstract

Immunohistochemistry (IHC) is an economic and precise method to localize the presence of specific protein at cellular level in tissue. Although many papillary thyroid carcinomas do not require IHC to render a diagnosis, there are certain scenarios in which IHC are important. The major diagnostic applications of IHC include confirmation of papillary thyroid carcinoma in sites other than the thyroid, distinguish papillary thyroid carcinoma from other primary thyroid neoplasms in thyroid, and identify papillary thyroid carcinoma from secondary tumors to the thyroid. At research level, IHC could help identify prognostic information, identify underlying genetic alterations, and predict response to treatment in papillary thyroid carcinoma. The understanding of principle and recent advances in IHC will improve the diagnosis and management of patients with thyroid lesions including papillary thyroid carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 109.00
Price excludes VAT (USA)
Softcover Book
USD 139.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Steurer S, Schneider J, Büscheck F, Luebke AM, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Menz A, Bernreuther C, Lebok P, Sauter G, Simon R, Jacobsen F, Uhlig R, Wilczak W, Minner S, Burandt E, Krech RH, Dum D, Krech T, Marx AH, Clauditz TS (2021) Immunohistochemically detectable thyroglobulin expression in extrathyroidal cancer is 100% specific for thyroidal tumor origin. Ann Diagn Pathol 54:151793. https://doi.org/10.1016/j.anndiagpath.2021.151793. PMID: 34425503

    Article  PubMed  Google Scholar 

  2. Chai SM, Kumarasinghe MP (2011) Diagnosis of necrotic and degenerate thyroid lesions: value of immunohistochemistry. Histopathology 59:496–503. https://doi.org/10.1111/j.1365-2559.2011.03961.x. PMID: 22034889

    Article  PubMed  Google Scholar 

  3. Lau SK, Luthringer DJ, Eisen RN (2002) Thyroid transcription factor-1: a review. Appl Immunohistochem Mol Morphol 10:97–102. https://doi.org/10.1097/00129039-200206000-00001. PMID: 12051643

    Article  CAS  PubMed  Google Scholar 

  4. Ordóñez NG (2012) Value of thyroid transcription factor-1 immunostaining in tumor diagnosis: a review and update. Appl Immunohistochem Mol Morphol 20:429–444. https://doi.org/10.1097/PAI.0b013e31825439bc. PMID: 22531688

    Article  CAS  PubMed  Google Scholar 

  5. Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C, Chirieac LR, Lis R, Loda M, Hornick JL, Drapkin R, Hirsch MS (2011) A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol 35:816–826. https://doi.org/10.1097/PAS.0b013e318216c112. PMID: 21552115

    Article  PubMed  Google Scholar 

  6. Jeong JH, Kim NY, Pyo JS (2020) Analysis of PAX8 immunohistochemistry in lung cancers: a meta-analysis. J Pathol Transl Med 54:300–309. https://doi.org/10.4132/jptm.2020.06.08. PMID: 32702943

    Article  PubMed  PubMed Central  Google Scholar 

  7. Durán Botía F, Fernández-Aceñero MJ, Ruiz Adelantado I, de Miguel P, Molino Á, Ortega Medina L (2020) Bone metastasis of papillary thyroid carcinoma simulating a pulmonary origin. Unusual immunohistochemistry leading to misdiagnosis. Rev Esp Patol 53:264–267. https://doi.org/10.1016/j.patol.2019.08.006. PMID: 33012498

    Article  PubMed  Google Scholar 

  8. Wu J, Zhang Y, Ding T, Cheng R, Gong W, Guo Y, Luo Y, Pan Y, Zhai Q, Sun W, Lin D, Sun B (2020) Napsin A expression in subtypes of thyroid tumors: comparison with lung adenocarcinomas. Endocr Pathol 31(1):39–45. https://doi.org/10.1007/s12022-019-09600-6. PMID: 31788765

    Article  CAS  PubMed  Google Scholar 

  9. Szczepanek-Parulska E, Pioch A, Cyranska-Chyrek E, Wolinski K, Jarmołowska-Jurczyszyn D, Janicka-Jedynska M, Majewski P, Zabel M, Ruchala M (2019) The role of immunohistochemical examination in diagnosis of papillary thyroid cancer in struma ovarii. Folia Histochem Cytobiol 57:35–42. https://doi.org/10.5603/FHC.a2019.0004. PMID: 30924920

    Article  PubMed  Google Scholar 

  10. Gonet A, Ślusarczyk R, Gąsior-Perczak D, Kowalik A, Kopczyński J, Kowalska A (2020) Papillary thyroid cancer in a struma ovarii in a 17-year-old nulliparous patient: a case report. Diagnostics (Basel) 10:45. https://doi.org/10.3390/diagnostics10010045. PMID: 31952290

    Article  Google Scholar 

  11. Abouhashem NS, Talaat SM (2017) Diagnostic utility of CK19 and CD56 in the differentiation of thyroid papillary carcinoma from its mimics. Pathol Res Pract 213:509–517. https://doi.org/10.1016/j.prp.2017.01.017. PMID: 28214214

    Article  CAS  PubMed  Google Scholar 

  12. Tastekin E, Keskin E, Can N, Canberk S, Mut A, Erdogan E, Asa N, Güldiken S, Sezer A, Azatcam M (2019) CD56, CD57, HBME1, CK19, Galectin-3 and p63 immunohistochemical stains in differentiating diagnosis of thyroid benign/malign lesions and NIFTP. Pol J Pathol 70:286–294. https://doi.org/10.5114/pjp.2019.93131. PMID: 32146798

    Article  PubMed  Google Scholar 

  13. Zargari N, Mokhtari M (2019) Evaluation of diagnostic utility of immunohistochemistry markers of TROP-2 and HBME-1 in the diagnosis of thyroid carcinoma. Eur Thyroid J 8:1–6. https://doi.org/10.1159/000494430. PMID: 30800635

    Article  CAS  PubMed  Google Scholar 

  14. Lam KY, Lui MC, Lo CY (2001) Cytokeratin expression profiles in thyroid carcinomas. Eur J Surg Oncol 27:631–635. https://doi.org/10.1053/ejso.2001.1203. PMID:11669590

    Article  CAS  PubMed  Google Scholar 

  15. Wa Kammal WS, Yahaya A, Shah SA, Abdullah Suhaimi SN, Mahasin M, Mustangin M, Md Isa N (2019) The diagnostic utility of cytokeratin 19 in differentiating malignant from benign thyroid lesions. Malays J Pathol 41:293–301. PMID:31901914

    CAS  PubMed  Google Scholar 

  16. Lam AK (2017) Pathology of endocrine tumours update: World Health Organization new classification 2017-other thyroid tumours. AJSP: Rev Rep 22:209–216

    Google Scholar 

  17. Sadiq Q, Sekhri R, Dibaba DT, Zhao Q, Agarwal S (2021) HBME1 and CK19 expression in non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) vs other follicular patterned thyroid lesions. World J Surg Oncol 19:143. https://doi.org/10.1186/s12957-021-02258-7. PMID: 33964951

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salajegheh A, Dolan-Evans E, Sullivan E, Irani S, Rahman MA, Vosgha H, Gopalan V, Smith RA, Lam AK (2014) The expression profiles of the galectin gene family in primary and metastatic papillary thyroid carcinoma with particular emphasis on galectin-1 and galectin-3 expression. Exp Mol Pathol 96:212–218. https://doi.org/10.1016/j.yexmp.2014.02.003. PMID: 24530443

    Article  CAS  PubMed  Google Scholar 

  19. Saffar H, Jahanbin B, Ameli F, Farhang F, Tavangar SM, Saffar H (2021) Diagnostic value of TROP2 expression in papillary thyroid carcinoma. Appl Immunohistochem Mol Morphol 29:218–222. https://doi.org/10.1097/PAI.0000000000000886. PMID:33264108

    Article  CAS  PubMed  Google Scholar 

  20. Abdou AG, Shabaan M, Abdallha R, Nabil N (2019) Diagnostic value of TROP-2 and CK19 expression in papillary thyroid carcinoma in both surgical and cytological specimens. Clin Pathol 12:2632010X19863047. https://doi.org/10.1177/2632010X19863047. PMID: 31384753

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chuang HW, Wang JS, Tsai JW, Hsu CT, Lin KJ (2021) Immunohistochemistry helps to distinguish noninvasive follicular thyroid neoplasm with papillary-like nuclear features/ noninvasive encapsulated follicular variant of papillary thyroid carcinoma with other follicular thyroid lesions. Medicina (Kaunas) 57:1246. https://doi.org/10.3390/medicina57111246. PMID: 34833464

    Article  Google Scholar 

  22. Song S, Kim H, Ahn SH (2019) Role of immunohistochemistry in fine needle aspiration and core needle biopsy of thyroid nodules. Clin Exp Otorhinolaryngol 12:224–230. https://doi.org/10.21053/ceo.2018.01011. PMID: 30531651

    Article  CAS  PubMed  Google Scholar 

  23. Samarasinghe S, Yuksel S, Mehrotra S (2020) Intermixed medullary and papillary thyroid cancer in a patient with renal cell carcinoma. Endocrinol Diabetes Metab Case Rep 2020:20–0025. https://doi.org/10.1530/EDM-20-0025. PMID: 32538376

    Article  PubMed Central  Google Scholar 

  24. Volante M, Lam AK, Papotti M, Tallini G (2021) Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? Endocr Pathol 32:63–76. https://doi.org/10.1007/s12022-021-09665-2. PMID: 33543394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abe I, Lam AK (2021) Anaplastic thyroid carcinoma: updates on WHO classification, clinicopathological features and staging. Histol Histopathol 36:239–248. https://doi.org/10.14670/HH-18-277. PMID: 33170501

    Article  PubMed  Google Scholar 

  26. Lam KY, Lo CY, Chan KW, Wan KY (2000) Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann Surg 231:329–338. https://doi.org/10.1097/00000658-200003000-00005. PMID: 10714625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ragazzi M, Torricelli F, Donati B, Ciarrocchi A, de Biase D, Tallini G, Zanetti E, Bisagni A, Kuhn E, Giordano D, Frasoldati A, Piana S (2021) Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature. Virchows Arch 478:265–281. https://doi.org/10.1007/s00428-020-02891-9. PMID: 32683537

    Article  CAS  PubMed  Google Scholar 

  28. Lam AK (2020) Squamous cell carcinoma of thyroid: a unique type of cancer in World Health Organization classification. Endocr Relat Cancer 27:R177–R192. https://doi.org/10.1530/ERC-20-0045. PMID: 32252028

    Article  CAS  PubMed  Google Scholar 

  29. Lam KY, Lo CY, Liu MC (2001) Primary squamous cell carcinoma of the thyroid gland: an entity with aggressive clinical behaviour and distinctive cytokeratin expression profiles. Histopathology 39:279–286. https://doi.org/10.1046/j.1365-2559.2001.01207.x. PMID: 11532039

    Article  CAS  PubMed  Google Scholar 

  30. Lam AK, Saremi N (2017) Cribriform-morular variant of papillary thyroid carcinoma: a distinctive type of thyroid cancer. Endocr Relat Cancer 24:R109–R121. https://doi.org/10.1530/ERC-17-0014. PMID: 28314770

    Article  CAS  PubMed  Google Scholar 

  31. Lam AK, Fridman M (2018) Characteristics of cribriform morular variant of papillary thyroid carcinoma in post-Chernobyl affected region. Hum Pathol 74:170–177. https://doi.org/10.1016/j.humpath.2018.01.006. PMID:29320754

    Article  PubMed  Google Scholar 

  32. Dettloff J, Seethala RR, Stevens TM, Brandwein-Gensler M, Centeno BA, Otto K, Bridge JA, Bishop JA, Leon ME (2017) Mammary analog secretory carcinoma (MASC) involving the thyroid gland: a report of the first 3 cases. Head Neck Pathol 11:124–130. https://doi.org/10.1007/s12105-016-0741-6. PMID:27400918

    Article  PubMed  Google Scholar 

  33. Dogan S, Wang L, Ptashkin RN, Dawson RR, Shah JP, Sherman EJ, Michael Tuttle R, Fagin JA, Klimstra DS, Katabi N, Ghossein RA (2016) Mammary analog secretory carcinoma of the thyroid gland: a primary thyroid adenocarcinoma harboring ETV6-NTRK3 fusion. Mod Pathol 29:985–995. https://doi.org/10.1038/modpathol.2016.115. PMID: 27282352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stergianos S, Juhlin CC, Zedenius J, Calissendorff J, Falhammar H (2021) Metastasis to the thyroid gland: characterization and survival of an institutional series spanning 28 years. Eur J Surg Oncol 47:1364–1369. https://doi.org/10.1016/j.ejso.2021.02.018. PMID: 33642087

    Article  PubMed  Google Scholar 

  35. Lam KY, Lo CY (1998) Metastatic tumors of the thyroid gland: a study of 79 cases in Chinese patients. Arch Pathol Lab Med 122:37–41. PMID: 9448014

    CAS  PubMed  Google Scholar 

  36. Ghossein CA, Khimraj A, Dogan S, Xu B (2021) Metastasis to the thyroid gland: a single-institution 16-year experience. Histopathology 78:508–519. https://doi.org/10.1111/his.14246. PMID: 32897542

    Article  PubMed  Google Scholar 

  37. Wu Z, Guo T, Li Q, Cheng L, Hu X, Xu A (2021) Rare metastasis of gastric cancer to the thyroid gland: a case report and review of literature. Front Surg 8:731673. https://doi.org/10.3389/fsurg.2021.731673. PMID: 34692762

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bourcier K, Fermeaux V, Leobon S, Deluche E (2018) Lobular breast carcinoma metastasis to the thyroid gland: case report and literature review. J Breast Cancer 21:463–467. https://doi.org/10.4048/jbc.2018.21.e55. PMID: 30607169

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shi Y, Brandler TC, Yee-Chang M, Cangiarella J, Wei XJ, Leung A, Szeto O, Deng FM, Liu CZ, Simsir A, Sun W (2020) Application of GATA 3 and TTF-1 in differentiating parathyroid and thyroid nodules on cytology specimens. Diagn Cytopathol 48:128–137. https://doi.org/10.1002/dc.24338

    Article  PubMed  Google Scholar 

  40. Smith RA, Salajegheh A, Weinstein S, Nassiri M, Lam AK (2011) Correlation between BRAF mutation and the clinicopathological parameters in papillary thyroid carcinoma with particular reference to follicular variant. Hum Pathol 42:500–506. https://doi.org/10.1016/j.humpath.2009.09.023. PMID:21167555

    Article  CAS  PubMed  Google Scholar 

  41. Shen X, Zhu G, Liu R, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Xing M (2018) Patient age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J Clin Oncol 36:438–445. https://doi.org/10.1200/JCO.2017.74.5497. PMID: 29240540

    Article  CAS  PubMed  Google Scholar 

  42. Kim KJ, Kim SG, Tan J, Shen X, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Xing M (2020) BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma. Eur J Cancer 124:161–169. https://doi.org/10.1016/j.ejca.2019.10.017. PMID: 31790974

    Article  CAS  PubMed  Google Scholar 

  43. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, Robenshtok E, Fagin JA, Puxeddu E, Fugazzola L, Czarniecka A, Jarzab B, O’Neill CJ, Sywak MS, Lam AK, Riesco-Eizaguirre G, Santisteban P, Nakayama H, Tufano RP, Pai SI, Zeiger MA, Westra WH, Clark DP, Clifton-Bligh R, Sidransky D, Ladenson PW, Sykorova V (2013) Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309:1493–1501. https://doi.org/10.1001/jama.2013.3190. PMID: 23571588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang F, Zhao S, Shen X, Zhu G, Liu R, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Wang Y, Xing M (2018) BRAF V600E confers male sex disease-specific mortality risk in patients with papillary thyroid cancer. J Clin Oncol 36:2787–2795. https://doi.org/10.1200/JCO.2018.78.5097. PMID:30070937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tao Y, Wang F, Shen X, Zhu G, Liu R, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Zhao S, Wang Y, Xing M (2021) BRAF V600E status sharply differentiates lymph node metastasis-associated mortality risk in papillary thyroid cancer. J Clin Endocrinol Metab 106:3228–3238. https://doi.org/10.1210/clinem/dgab286. PMID: 34273152

    Article  PubMed  Google Scholar 

  46. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, Elisei R, Bendlová B, Yip L, Mian C, Vianello F, Tuttle RM, Robenshtok E, Fagin JA, Puxeddu E, Fugazzola L, Czarniecka A, Jarzab B, O’Neill CJ, Sywak MS, Lam AK, Riesco-Eizaguirre G, Santisteban P, Nakayama H, Clifton-Bligh R, Tallini G, Holt EH, Sýkorová V (2015) Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 33(1):42–50. https://doi.org/10.1200/JCO.2014.56.8253. PMID: 25332244

    Article  PubMed  Google Scholar 

  47. Rashid FA, Tabassum S, Khan MS, Ansari HR, Asif M, Sheikh AK, Sameer Aga S (2021) VE1 immunohistochemistry is an adjunct tool for detection of BRAF V600E mutation: validation in thyroid cancer patients. J Clin Lab Anal 35:e23628. https://doi.org/10.1002/jcla.23628. PMID: 33305405

    Article  CAS  PubMed  Google Scholar 

  48. Choden S, Keelawat S, Jung CK, Bychkov A (2020) VE1 immunohistochemistry improves the limit of genotyping for detecting BRAF V600E mutation in papillary thyroid cancer. Cancers (Basel) 12:596. https://doi.org/10.3390/cancers12030596. PMID: 32150939

    Article  CAS  Google Scholar 

  49. Zhang Y, Liu L, Liu Y, Cao N, Wang L, Xing C (2021) Clinical significance of immunohistochemistry to detect BRAF V600E mutant protein in thyroid tissues. Medicine (Baltimore) 100:e25566. https://doi.org/10.1097/MD.0000000000025566. PMID: 33879712

    Article  CAS  Google Scholar 

  50. Parker KG, White MG, Cipriani NA (2020) Comparison of molecular methods and BRAF immunohistochemistry (VE1 Clone) for the detection of BRAF V600E mutation in papillary thyroid carcinoma: a meta-analysis. Head Neck Pathol 14:1067–1079. https://doi.org/10.1007/s12105-020-01166-8. PMID:32358715

    Article  PubMed  PubMed Central  Google Scholar 

  51. Singarayer R, Mete O, Perrier L, Thabane L, Asa SL, Van Uum S, Ezzat S, Goldstein DP, Sawka AM (2019) A systematic review and meta-analysis of the diagnostic performance of BRAF V600E immunohistochemistry in thyroid histopathology. Endocr Pathol 30:201–218. https://doi.org/10.1007/s12022-019-09585-2. PMID: 31300997

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Vasilyeva E, Wiseman SM (2019) Beyond immunohistochemistry and immunocytochemistry: a current perspective on galectin-3 and thyroid cancer. Expert Rev Anticancer Ther 19:1017–1027. https://doi.org/10.1080/14737140.2019.1693270. PMID: 31757172

    Article  CAS  PubMed  Google Scholar 

  53. Sun H, Chen Q, Liu W, Liu Y, Ruan S, Zhu C, Ruan Y, Ying S, Lin P (2021) TROP2 modulates the progression in papillary thyroid carcinoma. J Cancer 12:6883–6893. https://doi.org/10.7150/jca.62461. PMID: 34659576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asioli S, Erickson LA, Sebo TJ, Zhang J, Jin L, Thompson GB, Lloyd RV (2010) Papillary thyroid carcinoma with prominent hobnail features: a new aggressive variant of moderately differentiated papillary carcinoma. A clinicopathologic, immunohistochemical, and molecular study of eight cases. Am J Surg Pathol 34:44–52. https://doi.org/10.1097/PAS.0b013e3181c46677. PMID: 19956062

    Article  PubMed  Google Scholar 

  55. Ali KM, Awny S, Ibrahim DA, Metwally IH, Hamdy O, Refky B, Abdallah A, Abdelwahab K (2019) Role of P53, E-cadherin and BRAF as predictors of regional nodal recurrence for papillary thyroid cancer. Ann Diagn Pathol 40:59–65. https://doi.org/10.1016/j.anndiagpath.2019.04.005. PMID: 31031216

    Article  PubMed  Google Scholar 

  56. Salajegheh A, Vosgha H, Rahman MA, Amin M, Smith RA, Lam AK (2016) Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Hum Pathol 51:75–85. https://doi.org/10.1016/j.humpath.2015.12.018. PMID: 27067785

    Article  CAS  PubMed  Google Scholar 

  57. Salajegheh A, Smith RA, Kasem K, Gopalan V, Nassiri MR, William R, Lam AK (2011) Single nucleotide polymorphisms and mRNA expression of VEGF-A in papillary thyroid carcinoma: potential markers for aggressive phenotypes. Eur J Surg Oncol 37:93–99. https://doi.org/10.1016/j.ejso.2010.10.010. PMID: 21093207

    Article  CAS  PubMed  Google Scholar 

  58. Maroof H, Irani S, Arianna A, Vider J, Gopalan V, Lam AK (2019) Interactions of vascular endothelial growth factor and p53 with miR-195 in thyroid carcinoma: possible therapeutic targets in aggressive thyroid cancers. Curr Cancer Drug Targets 19:561–570. https://doi.org/10.2174/1568009618666180628154727. PMID:29956628

    Article  CAS  PubMed  Google Scholar 

  59. Maroof H, Islam F, Ariana A, Gopalan V, Lam AK (2017) The roles of microRNA-34b-5p in angiogenesis of thyroid carcinoma. Endocrine 58:153–166. https://doi.org/10.1007/s12020-017-1393-3. PMID: 28840508

    Article  CAS  PubMed  Google Scholar 

  60. Salajegheh A, Vosgha H, Md Rahman A, Amin M, Smith RA, Lam AK (2015) Modulatory role of miR-205 in angiogenesis and progression of thyroid cancer. J Mol Endocrinol 55:183–196. https://doi.org/10.1530/JME-15-0182. PMID: 26342107

    Article  CAS  PubMed  Google Scholar 

  61. Maroof H, Islam F, Dong L, Ajjikuttira P, Gopalan V, McMillan NAJ, Lam AK (2018) Liposomal delivery of miR-34b-5p induced cancer cell death in thyroid carcinoma. Cell 7:265. https://doi.org/10.3390/cells7120265. PMID: 30544959

    Article  CAS  Google Scholar 

  62. Yu XM, Lo CY, Chan WF, Lam KY, Leung P, Luk JM (2005) Increased expression of vascular endothelial growth factor C in papillary thyroid carcinoma correlates with cervical lymph node metastases. Clin Cancer Res 11:8063–8069. https://doi.org/10.1158/1078-0432.CCR-05-0646. PMID: 16299237

    Article  CAS  PubMed  Google Scholar 

  63. Salajegheh A, Pakneshan S, Rahman A, Dolan-Evans E, Zhang S, Kwong E, Gopalan V, Lo CY, Smith RA, Lam AK (2013) Co-regulatory potential of vascular endothelial growth factor-A and vascular endothelial growth factor-C in thyroid carcinoma. Hum Pathol 44:2204–2212. https://doi.org/10.1016/j.humpath.2013.04.014. PMID: 23845470

    Article  CAS  PubMed  Google Scholar 

  64. Mohamad Pakarul Razy NH, Wan Abdul Rahman WF, Win TT (2019) Expression of vascular endothelial growth factor and its receptors in thyroid nodular hyperplasia and papillary thyroid carcinoma: a tertiary health care centre based study. Asian Pac J Cancer Prev 20:277–282. https://doi.org/10.31557/APJCP.2019.20.1.277. PMID: 30678450

    Article  PubMed  Google Scholar 

  65. Ramos-Vara JA (2017) Principles and methods of immunohistochemistry. Methods Mol Biol 1641:115–128. https://doi.org/10.1007/978-1-4939-7172-5_5. PMID: 28748460

    Article  PubMed  Google Scholar 

  66. Abram M, Huhtamella R, Kalfert D, Hakso-Mäkinen H, Ludvíková M, Kholová I (2021) The role of cell blocks and immunohistochemistry in thyroid atypia of undetermined significance/follicular lesion of undetermined significance Bethesda Category. Acta Cytol 65:257–263. https://doi.org/10.1159/000514906

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred K. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lam, A.K., Lee, K.TW. (2022). Application of Immunohistochemistry in Papillary Thyroid Carcinoma. In: Lam, A.K. (eds) Papillary Thyroid Carcinoma. Methods in Molecular Biology, vol 2534. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2505-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2505-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2504-0

  • Online ISBN: 978-1-0716-2505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics