Skip to main content

Intracranial Self-Stimulation: Using the Curve-Shift Paradigm to Assess the Abuse Potential of Drugs

  • Protocol
  • First Online:
The Brain Reward System

Part of the book series: Neuromethods ((NM,volume 165))

  • 1009 Accesses

Abstract

Intracranial self-stimulation (ICSS) is an operant conditioning procedure used to quantify the brain reward function. Thus, this procedure allows us to study the effects of behavioral, pharmacological, or molecular manipulations on the reward circuit. In the context of drug abuse and addiction, ICSS is generally used to test the abuse potential of drugs and to evaluate the aversive effect induced by withdrawal from chronic drug exposure. There are two main methods to assess the effect of a drug on brain stimulation reward: the discrete trial current intensity paradigm and the frequency-rate curve-shift paradigm. However, this chapter describes specifically the frequency-rate curve-shift paradigm in rats. The purpose of this section is to provide the reader with how to perform the frequency-rate curve-shift paradigm with several types of drug exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 219.99
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419–427

    Article  CAS  PubMed  Google Scholar 

  2. Milner PM (1989) The discovery of self-stimulation and other stories. Neurosci Biobehav Rev 13(2–3):61–67

    Article  CAS  PubMed  Google Scholar 

  3. Rolls ET (1975) The neural basis of brain-stimulation reward. Prog Neurobiol 3:73–160

    CAS  PubMed  Google Scholar 

  4. Rompre PP, Boye S (1989) Localization of reward-relevant neurons in the pontine tegmentum: a moveable electrode mapping study. Brain Res 496(1–2):295–302. https://doi.org/10.1016/0006-8993(89)91076-7

    Article  CAS  PubMed  Google Scholar 

  5. Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongur D, Cohen BM (2010) Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 35(10):2049–2059. https://doi.org/10.1038/npp.2010.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. John CS, Smith KL, Van't Veer A, Gompf HS, Carlezon WA Jr, Cohen BM, Ongur D, Bechtholt-Gompf AJ (2012) Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology 37(11):2467–2475. https://doi.org/10.1038/npp.2012.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Slattery DA, Markou A, Cryan JF (2007) Evaluation of reward processes in an animal model of depression. Psychopharmacology 190(4):555–568. https://doi.org/10.1007/s00213-006-0630-x

    Article  CAS  PubMed  Google Scholar 

  8. Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2:2987. https://doi.org/10.1038/nprot.2007.441. https://www.nature.com/articles/nprot.2007.441#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  9. Negus SS, Miller LL (2014) Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol Rev 66(3):869–917. https://doi.org/10.1124/pr.112.007419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edmonds DE, Gallistel CR (1974) Parametric analysis of brain stimulation reward in the rat: III. Effect of performance variables on the reward summation function. J Comp Physiol Psychol 87(5):876–883

    Article  CAS  PubMed  Google Scholar 

  11. Miliaressis E, Rompré P-P, Laviolette P, Philippe L, Coulombe D (1986) The curve-shift paradigm in self-stimulation. Physiol Behav 37:85–91

    Article  CAS  PubMed  Google Scholar 

  12. Bauer CT, Banks ML, Negus SS (2014) The effect of chronic amphetamine treatment on cocaine-induced facilitation of intracranial self-stimulation in rats. Psychopharmacology 231(12):2461–2470. https://doi.org/10.1007/s00213-013-3405-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miliaressis E (1981) A miniature, moveable electrode for brain stimulation in small animals. Brain Res Bull 6:715–718

    Article  Google Scholar 

  14. Miliaressis E, Rompré PP, Durivage A (1982) Psychophysical method for mapping behavioral substrates using a moveable electrode. Brain Res Bull 8(6):693–701. https://doi.org/10.1016/0361-9230(82)90097-1

    Article  CAS  PubMed  Google Scholar 

  15. Vlachou S, Markou A (2011) Intracranial Self-Stimulation. In: Olmstead MC (ed) Animal Models of Drug Addiction. Humana Press, Totowa, NJ, pp 3–56. https://doi.org/10.1007/978-1-60761-934-5_1

    Chapter  Google Scholar 

  16. Desai SJ, Bharne AP, Upadhya MA, Somalwar AR, Subhedar NK, Kokare DM (2014) A simple and economical method of electrode fabrication for brain self-stimulation in rats. J Pharmacol Toxicol Methods 69(2):141–149. https://doi.org/10.1016/j.vascn.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  17. Bergeron S, Rompré P-P (2013) Blockade of ventral midbrain NMDA receptors enhances brain stimulation reward: A preferential role for GluN2A subunits. Eur Neuropsychopharmacol 23:1623–1635

    Article  CAS  PubMed  Google Scholar 

  18. Bonano JS, Glennon RA, De Felice LJ, Banks ML, Negus SS (2014) Abuse-related and abuse-limiting effects of methcathinone and the synthetic "bath salts" cathinone analogs methylenedioxypyrovalerone (MDPV), methylone and mephedrone on intracranial self-stimulation in rats. Psychopharmacology 231(1):199–207. https://doi.org/10.1007/s00213-013-3223-5

    Article  CAS  PubMed  Google Scholar 

  19. Gallo A, Lapointe S, Stip E, Potvin S, Rompre PP (2010) Quetiapine blocks cocaine-induced enhancement of brain stimulation reward. Behav Brain Res 208(1):163–168. https://doi.org/10.1016/j.bbr.2009.11.029

    Article  CAS  PubMed  Google Scholar 

  20. Bauer CT, Banks ML, Blough BE, Negus SS (2013) Use of intracranial self-stimulation to evaluate abuse-related and abuse-limiting effects of monoamine releasers in rats. Br J Pharmacol 168(4):850–862. https://doi.org/10.1111/j.1476-5381.2012.02214.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritchy Hodebourg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hodebourg, R. (2021). Intracranial Self-Stimulation: Using the Curve-Shift Paradigm to Assess the Abuse Potential of Drugs. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics