Skip to main content

Nitrate Contamination in Groundwater of Arid and Semi-Arid Regions, Ecotoxicological Impacts, and Management Strategies

  • Chapter
  • First Online:
Groundwater Quality and Geochemistry in Arid and Semi-Arid Regions

Abstract

Groundwater is the primary source of drinking and irrigation in arid and semi-arid regions. In the last few decades, groundwater contamination by nitrate has reached its maximum levels. Several geogenic and anthropogenic sources were found to be responsible for the nitrate contamination. Studies around the globe show that the extensive use of nitrogen-based fertilizers is the principal cause of nitrate contamination in arid and semi-arid aquifers. Nitrate in the drinking water can harm human health by resulting in methemoglobinemia, infectious diseases, thyroid problems, and increased risk of colorectal cancer. Therefore, the growing demand for groundwater, especially in arid and semi-arid regions, necessitates the development of effective nitrate removal strategies. Several existing technologies, such as reverse osmosis, ultrafiltration, chemical and biological denitrification, ion exchange, adsorption, and electrodialysis, can remove nitrate from groundwater. However, their applicability is contingent on several variables, including necessary infrastructure, the cost-effectiveness of the technology, scalability, and its widespread acceptance. Management of nitrate-contaminated groundwater entails source reduction, removal or transformation technologies, groundwater conservation, education, legislation, and guiding principles. Thus, this chapter focuses on nitrate contamination in groundwater, health and environmental impacts, management strategies, and options for safe water supply in arid and semi-arid regions worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abascal E, Gómez-Coma L, Ortiz I, Ortiz A (2022) Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci Total Environ 810:152233. https://doi.org/10.1016/j.scitotenv.2021.152233

    Article  CAS  PubMed  Google Scholar 

  2. Gutiérrez M, Biagioni RN, Alarcón-Herrera MT, Rivas-Lucero BA (2018) An overview of nitrate sources and operating processes in arid and semi-arid aquifer systems. Sci Total Environ 624:1513–1522. https://doi.org/10.1016/j.scitotenv.2017.12.252

    Article  CAS  PubMed  Google Scholar 

  3. Adimalla N (2020) Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. Hum Ecol Risk Assess 26:310–334. https://doi.org/10.1080/10807039.2018.1508329

    Article  CAS  Google Scholar 

  4. Panneerselvam B, Muniraj K, Duraisamy K, Pande C, Karuppannan S, Thomas M (2022) An integrated approach to explore the suitability of nitrate-contaminated groundwater for drinking purposes in a semi-arid region of India. Environ Geochem Health:1–17. https://doi.org/10.1007/s10653-022-01237-5

  5. Ramalingam S, Panneerselvam B, Kaliappan SP (2022) Effect of high nitrate contamination of groundwater on human health and water quality index in semi-arid region, South India. Arab J Geosci 15:1–14. https://doi.org/10.1007/s12517-022-09553-x

    Article  CAS  Google Scholar 

  6. Han D, Currell MJ, Cao G (2016) Deep challenges for China’s war on water pollution. Environ Pollut 218:1222–1233. https://doi.org/10.1016/j.envpol.2016.08.078

    Article  CAS  PubMed  Google Scholar 

  7. Huno SK, Rene ER, Van-Hullebusch ED, Annachhatre AP (2018) Nitrate removal from groundwater: a review of natural and engineered processes. J Water Supply Res Technol AQUA 67:885–902. https://doi.org/10.2166/aqua.2018.194

    Article  Google Scholar 

  8. Tokazhanov G, Ramazanova E, Hamid S, Bae S, Lee W (2020) Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: a review. J Chem Eng 384:123252. https://doi.org/10.1016/j.cej.2019.123252

    Article  CAS  Google Scholar 

  9. WHO (2011) Guidelines for drinking-water quality. World Health Organization, vol 216, pp 303–304. https://www.who.int/

  10. Adimalla N, Wu J (2019) Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Hum Ecol Risk Assess 25:191–216. https://doi.org/10.1080/10807039.2018.1546550

    Article  CAS  Google Scholar 

  11. Brindha K, Renganayaki S, Elango L (2017) Sources, toxicological effects and removal techniques of nitrates in groundwater: an overview. Indian J Environ Prot 37:667–700

    CAS  Google Scholar 

  12. Linhoff B (2022) Deciphering natural and anthropogenic nitrate and recharge sources in arid region groundwater. Sci Total Environ 848:157345. https://doi.org/10.1016/j.scitotenv.2022.157345

    Article  CAS  PubMed  Google Scholar 

  13. Singh S, Anil AG, Kumar V, Kapoor D, Subramanian S, Singh J, Ramamurthy PC (2022) Nitrates in the environment: a critical review of their distribution, sensing techniques, ecological effects and remediation. Chemosphere 287:131996. https://doi.org/10.1016/j.chemosphere.2021.131996

    Article  CAS  PubMed  Google Scholar 

  14. Rahman A, Mondal NC, Tiwari KK (2021) Anthropogenic nitrate in groundwater and its health risks in the view of background concentration in a semi-arid area of Rajasthan, India. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-88600-1

    Article  CAS  Google Scholar 

  15. Xin J, Wang Y, Shen Z, Liu Y, Wang H, Zheng X (2021) Critical review of measures and decision support tools for groundwater nitrate management: a surface-to-groundwater profile perspective. J Hydrol 598:126386. https://doi.org/10.1016/j.jhydrol.2021.126386

    Article  CAS  Google Scholar 

  16. Zhang Q, Xu P, Qian H (2020) Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Expos Health 12:487–500. https://doi.org/10.1007/s12403-020-00345-w

    Article  CAS  Google Scholar 

  17. Khan A, Naeem M, Zekker I, Arian MB, Michalski G, Khan A, Shah N, Zeeshan S, Haq HU, Subhan IM, Shah MA, Khan I, Shah AL, Zahoor M, Khurshed A (2021) Evaluating groundwater nitrate and other physicochemical parameters of the arid and semi-arid district of DI Khan by multivariate statistical analysis. Environ Technol:1–10. https://doi.org/10.1080/09593330.2021.1987532

  18. Michalski R (2018) Ion chromatography applications in wastewater analysis. Separations 5:16. https://doi.org/10.3390/separations5010016

    Article  CAS  Google Scholar 

  19. Morales JA, de Graterol LS, Mesa J (2000) Determination of chloride, sulfate and Nitrate in groundwater samples by ion chromatography. J Chromatogr A 884:185–190. https://doi.org/10.1016/S0021-9673(00)00423-4

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Z, Ansems N, Torfs P (2015) A global assessment of nitrate contamination in groundwater. International Groundwater Resources Assessment Center. Internship report, 4

    Google Scholar 

  21. Almasri MN (2007) Nitrate contamination of groundwater: a conceptual management framework. Environ Impact Assess Rev 27:220–242. https://doi.org/10.1016/j.eiar.2006.11.002

    Article  Google Scholar 

  22. Bouchard DC, Williams MK, Surampalli RY (1992) Nitrate contamination of groundwater: sources and potential health effects. J Am Water Works Ass 84:85–90. https://doi.org/10.1002/j.1551-8833.1992.tb07430.x

    Article  CAS  Google Scholar 

  23. Adimalla N, Li P (2019) Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum Ecol Risk Assess 25:81–103. https://doi.org/10.1080/10807039.2018.1480353

    Article  CAS  Google Scholar 

  24. Alex R, Kitalika A, Mogusu E, Njau K (2021) Sources of Nitrate in Ground Water Aquifers of the Semi-arid Region of Tanzania. Geofluids 2021. https://doi.org/10.1155/2021/6673013

  25. Abdesselam S, Halitim A, Jan A, Trolard F, Bourrié G (2013) Anthropogenic contamination of groundwater with nitrate in arid region: case study of southern Hodna (Algeria). Environ Earth Sci 70:2129–2141. https://doi.org/10.1007/s12665-012-1834-5

    Article  CAS  Google Scholar 

  26. Gu B, Ge Y, Chang SX, Luo W, Chang J (2013) Nitrate in groundwater of China: sources and driving forces. Glob Environ Chang 23:1112–1121. https://doi.org/10.1016/j.gloenvcha.2013.05.004

    Article  Google Scholar 

  27. Shukla S, Saxena A (2019) Global status of nitrate contamination in groundwater: its occurrence, health impacts, and mitigation measures. Handb Environ Mater Manage:869–888. https://doi.org/10.1007/978-3-319-58538-3_20-1

  28. Zendehbad M, Cepuder P, Loiskandl W, Stumpp C (2019) Source identification of nitrate contamination in the urban aquifer of Mashhad, Iran. J Hydrol Reg 25:100618. https://doi.org/10.1016/j.ejrh.2019.100618

    Article  Google Scholar 

  29. Bureau of Indian Standards (2012) Indian standard specification for drinking water (IS:10500). BIS, Manak Bhawan, New Delhi. Available at: https://law.resource.org/pub/in/bis/S06/is.10500.2012.pdf

  30. EPA (2012) National primary drinking water regulations. Environmental Protection Agency, Washington. https://www.epa.gov/

  31. Agarwal M, Singh M, Hussain J (2019) Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Gautam Budh Nagar district, Uttar Pradesh, India. Acta Geochim 38:703–717. https://doi.org/10.1007/s11631-018-00311-z

    Article  CAS  Google Scholar 

  32. Food and Agriculture Organization (FAO) (2008) Water and Cereals in Drylands. Food and Agriculture Organization of the United Nations, Rome, Italy and EarthScan (ISBN 978-92-5-1060520 (FAO)). http://www.fao.org/docrep/012/i0372e/i0372e00.htm

  33. Gaur MK, Squires VR (2018) Geographic extent and characteristics of the world’s arid zones and their peoples. In: Gaur M, Squires V (eds) Climate variability impacts on land use and livelihoods in drylands. Springer, Cham. https://doi.org/10.1007/978-3-319-56681-8_1

    Chapter  Google Scholar 

  34. Alsabti B, Sabarathinam C, Svv DR (2023) Identification of high nitrate concentration in shallow groundwater of an arid region: a case study of South Kuwait's Bay. Environ Monit Assess 195:143. https://doi.org/10.1007/s10661-022-10698-1

    Article  CAS  Google Scholar 

  35. Burow KR, Nolan BT, Rupert MG, Dubrovsky NM (2010) Nitrate in groundwater of the United States, 1991-2003. J Environ Sci Technol 44:4988–4997. https://doi.org/10.1021/es100546y

    Article  CAS  Google Scholar 

  36. Rahmati O, Samani AN, Mahmoodi N, Mahdavi M (2015) Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in western Iran (Case Study: Ghorveh–Dehgelan Aquifer). Water Qual Expo Health 7:143–151. https://doi.org/10.1007/s12403-014-0135-5

    Article  CAS  Google Scholar 

  37. Antiguedad I, Zabaleta A, Martinez-Santos M, Ruiz E, Uriarte J, Morales T, Sanchez-Perez JM (2017) A simple multi-criteria approach to delimitate nitrate attenuation zones in alluvial floodplains. Four cases in south-western Europe. Ecol Eng 103:315–331. https://doi.org/10.1016/j.ecoleng.2016.09.007

    Article  Google Scholar 

  38. Beutel MW, Duvil R, Cubas FJ, Grizzard TJ (2017) Effects of nitrate addition on water column methylmercury in Occoquan Reservoir, Virginia, USA. Water Res 110:288–296. https://doi.org/10.1016/j.watres.2016.12.022

    Article  CAS  PubMed  Google Scholar 

  39. Nawale VP, Malpe DB, Marghade D, Yenkie R (2021) Non-carcinogenic health risk assessment with source identification of nitrate and fluoride polluted groundwater of Wardha sub-basin, central India. Ecotoxicol Environ Saf 208:111548. https://doi.org/10.1016/j.ecoenv.2020.111548

    Article  CAS  PubMed  Google Scholar 

  40. Adimalla N (2019) Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Expos Health 11:9–123. https://doi.org/10.1007/s12403-018-0288-8

    Article  CAS  Google Scholar 

  41. Jandu A, Malik A, Dhull SB (2021) Fluoride and nitrate in groundwater of rural habitations of semi-arid region of northern Rajasthan, India: a hydrogeochemical, multivariate statistical, and human health risk assessment perspective. Environ Geochem Health:1–30. https://doi.org/10.1007/s10653-021-00882-6

  42. Ahada CP, Suthar S (2018) Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environ Sci Pollut Res 25:25336–25347. https://doi.org/10.1007/s11356-018-2581-2

    Article  CAS  Google Scholar 

  43. Tanwer N, Deswal M, Khyalia P, Laura JS, Khosla B (2023) Assessment of groundwater potability and health risk due to fluoride and nitrate in groundwater of Churu District of Rajasthan, India. Environ Geochem Health:1–23. https://doi.org/10.1007/s10653-023-01485-z

  44. Sunitha V, Reddy YS, Suvarna B, Reddy BM (2022) Human health risk assessment (HHRA) of fluoride and nitrate using pollution index of groundwater (PIG) in and around hard rock terrain of Cuddapah, AP South India. J Environ Chem Ecotoxicol 4:113–123. https://doi.org/10.1016/j.enceco.2021.12.002

    Article  CAS  Google Scholar 

  45. Selmane T, Dougha M, Djerbouai S, Djemiat D, Lemouari N (2022) Groundwater quality evaluation based on water quality indices (WQI) using GIS: Maadher plain of Hodna, Northern Algeria. Environ Sci Pollut Res:1–20. https://doi.org/10.1007/s11356-022-24338-1

  46. Ali Rahmani SE, Chibane B (2022) Geochemical assessment of groundwater in semiarid area, case study of the multilayer aquifer in Djelfa, Algeria. App Water Sci 12(4):59.

    Google Scholar 

  47. Masoud MH, Rajmohan N, Basahi JM, Niyazi BA (2022) Application of water quality indices and health risk models in the arid coastal aquifer, Southern Saudi Arabia. Environ Sci Pollut Res 29:70493–70507. https://doi.org/10.1007/s11356-022-20835-5

    Article  CAS  Google Scholar 

  48. Atabati A, Adab H, Zolfaghari G, Nasrabadi M (2022) Modeling groundwater nitrate concentrations using spatial and non-spatial regression models in a semi-arid environment. Water Sci Eng 15:218–227. https://doi.org/10.1016/j.wse.2022.05.002

    Article  Google Scholar 

  49. Mohammed AM, Refaee E-DGK, Harb S (2022) Hydrochemical characteristics and quality assessment of shallow groundwater under intensive agriculture practices in arid region, Qena, Egypt. Appl Water Sci 12:92. https://doi.org/10.1007/s13201-022-01611-9

    Article  CAS  Google Scholar 

  50. Singhal A, Gupta R, Singh AN, Shrinivas A (2020) Assessment and monitoring of groundwater quality in semi-arid region. Groundw Sustain Dev 11:100381. https://doi.org/10.1016/j.gsd.2020.100381

    Article  Google Scholar 

  51. Karunanidhi D, Aravinthasamy P, Subramani T, Kumar M (2021) Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: a case study from Texvalley (Tiruppur region) of India. Chemosphere 265:129083. https://doi.org/10.1016/j.chemosphere.2020.129083

    Article  CAS  PubMed  Google Scholar 

  52. Adimalla N, Dhakate R, Kasarla A, Taloor AK (2020) Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundw Sustain Dev 10:100334. https://doi.org/10.1016/j.gsd.2020.100334

    Article  Google Scholar 

  53. Nyilitya B, Mureithi S, Boeckx P (2020) Tracking sources and fate of groundwater nitrate in Kisumu City and Kano Plains, Kenya. Water 12:401. https://doi.org/10.3390/w12020401

    Article  Google Scholar 

  54. Kaur L, Rishi MS, Siddiqui AU (2020) Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environ Pollut 259:113711. https://doi.org/10.1016/j.envpol.2019.113711

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Q, Xu P, Qian H (2019) Assessment of groundwater quality and human health risk (HHR) evaluation of nitrate in the Central-Western Guanzhong Basin, China. Int J Environ Res 16:4246. https://doi.org/10.3390/ijerph16214246

    Article  CAS  Google Scholar 

  56. Radfarda M, Gholizadehc A, Azhdarpoorb A, Badeenezhada A, Mohammad AA, Yousefie MJD (2019) Health risk assessment to fluoride and nitrate in drinking water of rural residents living in the Bardaskan city, arid region, southeastern Iran. Water Treat 145:249–256. https://doi.org/10.5004/dwt.2019.23651

    Article  CAS  Google Scholar 

  57. Ahmed N, Bodrud-Doza M, Islam SDU, Choudhry MA, Muhib MI, Zahid A, Hossain S, Moniruzzaman M, Deb N, Bhuiyan MAQ (2019) Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Bangladesh. Acta Geochim 38:440–455. https://doi.org/10.1007/s11631-018-0303-6

    Article  CAS  Google Scholar 

  58. Nejatijahromi Z, Nassery HR, Hosono T, Nakhaei M, Alijani F, Okumura A (2019) Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran. Agric Water Manage 221:397–414. https://doi.org/10.1016/j.agwat.2019.04.015

    Article  Google Scholar 

  59. Adimalla N, Li P, Qian H (2018) Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Hum Ecol Risk Assess. https://doi.org/10.1080/10807039.2018.1460579

  60. Adimalla N, Li P, Venkatayogi S (2018) Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environ Process 5:363–383. https://doi.org/10.1007/s40710-018-0297-4

    Article  CAS  Google Scholar 

  61. Charizopoulos N, Zagana E, Psilovikos A (2018) Assessment of natural and anthropogenic impacts in groundwater, utilizing multivariate statistical analysis and inverse distance weighted interpolation modeling: the case of a Scopia basin (Central Greece). Environ Earth Sci 77:1–18. https://doi.org/10.1007/s12665-018-7564-6

    Article  CAS  Google Scholar 

  62. Zaki SR, Redwan M, Masoud AM, Abdel Moneim AA (2019) Chemical characteristics and assessment of groundwater quality in Halayieb area, southeastern part of the Eastern Desert, Egypt. J Geosci 23:149–164. https://doi.org/10.1007/s12303-018-0020-5

    Article  CAS  Google Scholar 

  63. Re V, Sacchi E (2017) Tackling the salinity-pollution nexus in coastal aquifers from arid regions using nitrate and boron isotopes. Environ Sci Pollut Res 24:13247–13261. https://doi.org/10.1007/s11356-017-8384-z

    Article  CAS  Google Scholar 

  64. Chen J, Wu H, Qian H, Gao Y (2017) Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semi-arid region of Northwest China. Expos Health 9:183–195. https://doi.org/10.1007/s12403-016-0231-9

    Article  CAS  Google Scholar 

  65. Rezaei M, Nikbakht M, Shakeri A (2017) Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, south Iran. Environ Sci Pollut Res 24:15471–15487. https://doi.org/10.1007/s11356-017-9108-0

    Article  CAS  Google Scholar 

  66. Vystavna Y, Diadin D, Yakovlev V, Hejzlar J, Vadillo I, Huneau F, Lehmann MF (2017) Nitrate contamination in a shallow urban aquifer in East Ukraine: evidence from hydrochemical, stable isotopes of nitrate and land use analysis. Environ Earth Sci 76:1–13. https://doi.org/10.1007/s12665-017-6796-1

    Article  CAS  Google Scholar 

  67. Karroum M, Elgettafi M, Elmandour A, Wilske C, Himi M, Casas A (2017) Geochemical processes controlling groundwater quality under semi-arid environment: a case study in central Morocco. Sci Total Environ 609:1140–1151. https://doi.org/10.1016/j.scitotenv.2017.07.199

    Article  CAS  PubMed  Google Scholar 

  68. Vystavna Y, Yakovlev V, Diadin D, Vergeles Y, Stolberg F (2015) Hydrochemical characteristics and water quality assessment of surface and ground waters in the transboundary (Russia/Ukraine) Seversky Donets basin. Environ Earth Sci 74:585–596. https://doi.org/10.1007/s12665-015-4060-0

    Article  CAS  Google Scholar 

  69. Rodriguez-Galiano V, Mendes MP, Garcia-Soldado MJ, Chica-Omo M, Ribeiro L (2014) Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain). Sci Total Environ 476:189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  70. Anning DW, Paul AP, McKinney TS, Huntington JM, Bexfield LM, Thiros SA (2012) Predicted nitrate and arsenic concentrations in basin-fill aquifers of the southwestern United States. US Department of the Interior, US Geological Survey, pp 2012–5065. Available at https://pubs.usgs.gov/sir/2012/5065/

  71. Jalali M (2011) Nitrate pollution of groundwater in Toyserkan, western Iran. Environ Earth Sci 62:907–913. https://doi.org/10.1007/s12665-010-0576-5

    Article  CAS  Google Scholar 

  72. Moratalla A, Gómez-Alday JJ, De-las HJ, Sanz D, Castaño S (2009) Nitrate in the water-supply wells in the Mancha Oriental Hydrogeological System (SE Spain). Water Resour Manage 23:1621–1640. https://doi.org/10.1007/s11269-008-9344-7

    Article  Google Scholar 

  73. Ramakrishnaiah CR, Sadashivaiah C, Ranganna G (2009) Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. E-J Chem 6:523–530. https://doi.org/10.1155/2009/757424

    Article  CAS  Google Scholar 

  74. Gates JB, Böhlke JK, Edmunds WM (2008) Ecohydrological factors affecting nitrate concentrations in a phreatic desert aquifer in northwestern China. J Environ Sci Technol 42:3531–3537. https://doi.org/10.1021/es702478d

    Article  CAS  Google Scholar 

  75. Stadler S, Osenbrück K, Knöller K, Suckow A, Sültenfuß J, Oster H, Himmelsbach T, Hötzl H (2008) Understanding the origin and fate of nitrate in groundwater of semi-arid environments. J Arid Environ 72:1830–1842. https://doi.org/10.1016/j.jaridenv.2008.06.003

    Article  Google Scholar 

  76. Moore KB, Ekwurzel B, Esser BK, Hudson GB, Moran JE (2006) Sources of groundwater nitrate revealed using residence time and isotope methods. J Appl Geochem 21:1016–1029. https://doi.org/10.1016/j.apgeochem.2006.03.008

    Article  CAS  Google Scholar 

  77. Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Cleemput OC, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater. Water Res 43:1159–1170. https://doi.org/10.1016/j.watres.2008.12.048

    Article  CAS  PubMed  Google Scholar 

  78. Xu S, Kang P, Sun YA (2016) A stable isotope approach and its application for identifying nitrate source and transformation process in water. Environ Sci Pollut Res 23:1133–1148. https://doi.org/10.1007/s11356-015-5309-6

    Article  CAS  Google Scholar 

  79. Miyamoto C, Ketterings Q, Cherney J, Kilcer T (2008) Nitrogen fixation, agronomy fact sheet series. Available at: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet39.pdf

  80. Eskiocak S, Dundar C, Basoglu T, Altaner S (2005) The effects of taking chronic nitrate by drinking water on thyroid functions and morphology. Clin Exp Med 5:66–71. https://doi.org/10.1007/s10238-005-0068-1

    Article  CAS  PubMed  Google Scholar 

  81. Parvizishad M, Dalvand A, Mahvi AH, Goodarzi F (2017) A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health. Health Scope 6(3):14164

    Google Scholar 

  82. Ashok V, Hait S (2015) Remediation of nitrate-contaminated water by solid-phase denitrification process – a review. Environ Sci Pollut Res 22:8075–8093. https://doi.org/10.1007/s11356-015-4334-9

    Article  CAS  Google Scholar 

  83. Liu J, You L, Amini M, Obersteiner M, Herrero M, Zehnder AJ, Yang H (2010) A high-resolution assessment on global nitrogen flows in cropland. Proc Natl Acad Sci 107:8035–8040. https://doi.org/10.1073/pnas.0913658107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sahoo PK, Kim K, Powell MA (2016) Managing groundwater nitrate contamination from livestock farms: implication for nitrate management guidelines. Curr Pollut Rep 2:178. https://doi.org/10.1007/s40726-016-0033-5

    Article  CAS  Google Scholar 

  85. Sharma S, Bhattacharya A (2017) Drinking water contamination and treatment techniques. Appl Water Sci 7:1043–1067. https://doi.org/10.1007/s13201-016-0455-7

    Article  CAS  Google Scholar 

  86. Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z (2019) A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 11:1252. https://doi.org/10.3390/polym11081252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chander S, Yadav S, Gupta A, Luhach N (2023) Sequestration of Ni (II), Pb (II), and Zn (II) utilizing biogenic synthesized Fe3O4/CLPC NCs and modified Fe3O4/CLPC@CS NCs: Process optimization, simulation modeling, and feasibility study. Environ Sci Pollut Res 30:114056–114077. https://doi.org/10.1007/s11356-023-30318-w

  88. Yadav S, Chander S, Kumari S, Gupta A (2023) Removal of indigo blue dye using iron oxide nanoparticles-process optimization via taguchi method. Orien J Chem 39(2). https://doi.org/10.13005/ojc/390215

  89. Zhang F, Jin R, Chen J, Shao C, Gao W, Li L, Guan N (2005) High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. J Catal 232:424–431. https://doi.org/10.1016/j.jcat.2005.04.014

    Article  CAS  Google Scholar 

  90. Bastani M, Harter T (2019) Source area management practices as remediation tool to address groundwater nitrate pollution in drinking supply wells. J Contam Hydrol 226:103521. https://doi.org/10.1016/j.jconhyd.2019.103521

    Article  CAS  PubMed  Google Scholar 

  91. Li J, He Z, Du J, Zhao L, Chen L, Zhu X, Lin P, Fang S, Zhao M, Tian Q (2018) Regional variability of agriculturally-derived nitrate-nitrogen in shallow groundwater in China, 2004–2014. Sustainability 10(5):1393. https://doi.org/10.3390/su10051393

    Article  CAS  Google Scholar 

  92. Keeney D, Olson RA (1986) Sources of Nitrate to ground water. Crit Rev Environ Sci Technol 16:257–304. https://doi.org/10.1080/10643388609381748

    Article  CAS  Google Scholar 

  93. Zhang WL, Tian ZX, Zhang N, Li XQ (1996) Nitrate pollution of groundwater in northern China. Agric Ecosyst Environ 59:223–231. https://doi.org/10.1016/0167-8809(96)01052-3

    Article  CAS  Google Scholar 

  94. MARA (2011) Guidance for scientific fertilization of major crops. Ministry of Agriculture and Rural Affairs, People’s Republic of China. http://english.moa.gov.cn/

Download references

Acknowledgments

The first author thanks to University Grants Commission, New Delhi, India, for providing fellowship during Ph.D. work (UGC-Ref. No.: 190510166108). The authors also express gratitude to the editors for their valuable remarks and comments regarding the completion of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chander, S., Yadav, S., Gupta, A. (2023). Nitrate Contamination in Groundwater of Arid and Semi-Arid Regions, Ecotoxicological Impacts, and Management Strategies. In: Ali, S., Negm, A. (eds) Groundwater Quality and Geochemistry in Arid and Semi-Arid Regions. The Handbook of Environmental Chemistry, vol 126. Springer, Cham. https://doi.org/10.1007/698_2023_1047

Download citation

Publish with us

Policies and ethics