Skip to main content

Orbit Dynamics, Stability and Chaos in Planetary Systems

  • Chapter
  • First Online:
Chaos and Stability in Planetary Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 683))

Abstract

Let us start with a problem of dynamical biology, which was posed about 800 years ago by Fibonacci1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Alfaro and C. Chiralt: Invariant Rotational Curves in Sitnikov's Problem. CMDA 55, 351 (1993)

    Article  ADS  MATH  Google Scholar 

  2. N. Asghari, C. Broeg, L. Carone, R. Casas-Miranda, J.C. Castro Palacio, I. Csillik, R. Dvorak, F. Freistetter, G. Hadjivantsides, H. Hussmann, A. Khramova, M. Khristoforova, I. Khromova, I. Kitiashivilli, S. Kozlowski, T. Laakso, T. Laczkowski, D. Lytvinenko, O. Miloni, R. Morishima, A. Moro-Martin, V. Paksyutov, A. Pal, V. Patidar, B. Pečnik, O. Peles, J. Pyo, T. Quinn, A. Rodriguez, C. Romano, E. Saikia, J. Stadel, M. Thiel, N. Todorovic, D. Veras, E. Vieira Neto, J. Vilagi, W. von Bloh, R. Zechner, E. Zhuchkova: Stability of terrestrial planets in the habitable zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208. A&A 426, 353 (2004)

    Article  ADS  Google Scholar 

  3. D. Brouwer and G.M. Clemence: Methods of Celestial Mechanics, (Academic Press, New York and London 1961)

    Google Scholar 

  4. A. Celletti and A. Giorgilli: On the stability of the Lagrangian points in the spatial restricted problem of three bodies. CMDA 50, 31 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. G. Contopoulos : Order and Chaos in Dynamical Astronomy, Astronomy and Astrophysics Library, (Springer 2002)

    Google Scholar 

  6. G. Contopoulos, R. Dvorak, M.Harsoula and F. Freistetter: Chaos and Birfucations, submitted (2004)

    Google Scholar 

  7. M. Delva: A Lie integrator program and test for the elliptic restricted three body problem. A&A Supp 60, 277 (1985)

    ADS  Google Scholar 

  8. R. Dvorak, G. Contopoulos, C. Efthymiopoulos and N. Voglis: “Stickiness” in mappings and dynamical systems. Planetary and Space Science 46, 1567 (1997)

    Article  ADS  Google Scholar 

  9. R. Dvorak, F. Vrabec and K. Wodnar: The Sitnikov Problem: A Short Review. In: Sistema solare e sistemi stellari, Teorie perturbative, Dinamica del volo spaziale ed by A. Celletti and E. Perozzi, 16 (1998)

    Google Scholar 

  10. R. Dvorak, F. Freistetter. B. Funk and G. Contopoulos: New insights on the chaotic behaviour of the standardmap. In: Proceedings of the 3rd Austrian-Hungarian Workshop on Trojans and related Topic ed by F. Freistetter, R. Dvorak and B.{É}rdi (Eätväs University Press 2003), 185

    Google Scholar 

  11. R. Dvorak, E. Pilat-Lohinger, B. Funk and F. Freistetter: Planets in habitable zones: A study of the binary Gamma Cephei. A&A 398, L1 (2003)

    Article�� ADS  Google Scholar 

  12. R. Dvorak, E. Pilat-Lohinger, B. Funk and F. Freistetter: A study of the stable regions in the planetary system HD 74156 - Can it host earthlike planets in habitable zones? A&A 410, L13 (2003)

    Article  ADS  Google Scholar 

  13. R. Dvorak: Chaos in Solar System Dynamics. In: Galaxies and Chaos ed by G. Contopoulos and N. Voglis, Lect. Notes in Phys. 626, 395 (2003)

    ADS  Google Scholar 

  14. R. Dvorak, E. Pilat-Lohinger, R. Schwarz and F. Freistetter: Extrasolar Trojan planets close to habitable zones A&A 426, L37 (2004)

    Article  ADS  Google Scholar 

  15. Efthymiopoulos C. Contopoulos G. N. Voglis Cantori, Islands and Asymptotic Curves in the Stickiness Region CMDA 73, 221 (1999)

    Google Scholar 

  16. Ch. Efthymiopoulos: CMDA, (in press) (2005)

    Google Scholar 

  17. B. {É}rdi: Long periodic perturbations of Trojan asteroids. CMDA 43, 303 (1988)

    MATH  Google Scholar 

  18. B. {É}rdi: The Trojan problem. CMDA 65, 149 (1997)

    Article  ADS  MATH  Google Scholar 

  19. B. Érdi, R. Dvorak, Zs. Sándor and E. Pilat-Lohinger: The dynamical structure of the habitable zone in the HD 38529, HD 168443 and HD 169830 systems. MNRAS 351, 1943 (2004)

    Article  Google Scholar 

  20. E. Fermi: Phys. Rev. 75, 1169 (1949)

    Article  ADS  MATH  Google Scholar 

  21. T. Fliessbach: Theoretische Mechanik (Spektrum Akademischer Verlag 1996)

    Google Scholar 

  22. C. Froeschlé, E. Lega and R. Gonczi: Fast Lyapunov Indicators. Application to Asteroidal Motion. CMDA 67, 41 (1997)

    Article  ADS  MATH  Google Scholar 

  23. H. Goldstein, C. Poole and J. Safko: Classical Mechanics, (Pearson, Addison and Wesley 2002)

    Google Scholar 

  24. W. Gräbner: Die Lie-Reihen und ihre Anwendungen, (VEB, Deutscher Verlag der Wissenschaften, Berlin 1967)

    Google Scholar 

  25. J. Hagel: A new analytic approach to the Sitnikov problem. CMDA 53, 267 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. J. Hagel and Th. Trenkler: A Computer-Aided Analysis of the Sitnikov Problem CMDA 56, 81 (1993)

    Article  ADS  MATH  Google Scholar 

  27. A. Hanslmeier and R. Dvorak: Numerical Integration with Lie Series. A&A 132, 204 (1984)

    ADS  MathSciNet  Google Scholar 

  28. M. Hénon and C. Heiles: The applicability of the third integral of motion: some numerical experiments. AJ 69, 73 (1964)

    Article  ADS  Google Scholar 

  29. D.F. Hevia and A.F. Raada: Chaos in the three-body problem: the Sitnikov case. European Journal of Physics 17 5, 295 (1995)

    Google Scholar 

  30. M.J. Holman and P.A. Wiegert: Long-Term Stability of Planets in Binary Systems. AJ 117, 621 (1999)

    Article  ADS  Google Scholar 

  31. T. Ito and K. Tanikawa: Long-term integrations and stability of planetary orbits in our Solar system. MNRAS 336, 483 (2002)

    Article  ADS  Google Scholar 

  32. J.F. Kasting, D.P. Whitmire and R.T. Reynolds: Habitable Zones around Main Sequence Stars. Icarus, 101, 108 (1993)

    Article  ADS  Google Scholar 

  33. H. Lammer, R. Dvorak, E. Pilat-Lohinger, B. Funk, F. Freistetter, I. Ribas, F. Selsis, E.F. Guinan, W.W. Weiss and S.J. Bauer: Atmosphere and orbital stability of exosolar planets orbiting gamma Cephei. In: Proceedings EGS-AGU-EUG Joint Assembly, Nice} (2003)

    Google Scholar 

  34. J. Laskar, The chaotic motion of the solar system - A numerical estimate of the size of the chaotic zones. Icarus 88 266, (1990)

    Article  ADS  Google Scholar 

  35. J. Laskar, T. Quinn and S. Tremaine: Confirmation of resonant structure in the solar system, Confirmation of resonant structure in the solar system. Icarus 95, 148 (1992)

    Article  ADS  Google Scholar 

  36. J. Laskar: Large-scale chaos in the solar system. A&A 287, L9 (1994)

    ADS  Google Scholar 

  37. J. Laskar: Large Scale Chaos and Marginal Stability in the Solar System. CMDA 64, 115 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. G. Laughlin and J.E. Chambers: Extrasolar Trojans: The Viability and Detectability of Planets in the 1:1 Resonance. AJ 124, 592 (2002)

    Article  ADS  Google Scholar 

  39. M. Lecar, F.A. Franklin, M.J. Holman and N.J. Murray: Chaos in the Solar System. Ann. Rev. of Astronomy and Astrophysics 39, 581 (2001)

    Article  ADS  Google Scholar 

  40. Ch. Lhotka: High oder perturbation theory for the Sitnikov problem. MA Thesis, University of Vienna, (2004)

    Google Scholar 

  41. A.J. Lichtenberg and M.A. Lieberman: Regular and Stochastic Motion}, (Springer 1983)

    Google Scholar 

  42. H. Lichtenegger: The dynamics of bodies with variable masses. CMDA 34, 357 (1984)

    MATH  MathSciNet  Google Scholar 

  43. M.A. Liebermann and A.J. Lichtenberg: Phys. Rev A5, 1852 (1972)

    ADS  Google Scholar 

  44. W.D. MacMillan: An integrable case in the restricted problem of three bodies. AJ 27, 11 (1911)

    Article  ADS  Google Scholar 

  45. C. Marchal: The Three Body Problem, (Elseveer 1991)

    Google Scholar 

  46. K. Menou and S. Tabachnik: Dynamical Habitability of Known Extrasolar Planetary Systems. AJ 583, 473 (2003)

    Article  ADS  Google Scholar 

  47. A. Milani: The Trojan asteroid belt: Proper elements, stability, chaos and families. CMDA 57, 59 (1993)

    Article  ADS  Google Scholar 

  48. A. Milani, A. Nobili and Z. Knežević: Stable Chaos in the Asteroid Belt. Icarus 125, 13 (1997)

    Article  ADS  Google Scholar 

  49. J. Moser: Stable and Random Motions in Dynamical Systems with Special Emphasis on Celestial Mechanics. In: Annals of Mathematical Studies Number 77, (Princeton University Press, Princeton, New Jersey 1971)

    Google Scholar 

  50. C.D. Murray and S.F. Dermott: Solar System Dynamics (Cambridge University Press 1999)

    Google Scholar 

  51. D. Naef, M. Mayor, S.G. Korzennik, D. Queloz, S. Udry, P. Nisenson, R.W. Noyes, T.M. Brown, J.L. Beuzit, C. Perrier and J.P. Sivan: The ELODIE survey for northern extra-solar planets. II. A Jovian planet on a long-period orbit around GJ 777 A. A&A 410, 1051 (2003)

    Google Scholar 

  52. G. Pavanini: Annali di Mathematica, Serie III, Tomo XIII (1907)

    Google Scholar 

  53. E. Pilat-Lohinger, R. Dvorak and Ch. Burger: Trojans in Stable Chaotic Motion. CMDA 73, 117 (1999)

    Article  ADS  MATH  Google Scholar 

  54. E. Pilat-Lohinger and R. Dvorak: Stability of planetary orbits in double stars. CMDA 82, 143 (2002)

    Article  ADS  MATH  Google Scholar 

  55. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery: Numerical Recipes, (Cambridge University Press 1992)

    Google Scholar 

  56. E. Rabe: Third-order stability of the long-period Trojan librations. AJ 72, 10 (1967)

    Article  ADS  Google Scholar 

  57. G. Rabl and R. Dvorak: Satellite-type planetary orbits in double stars - A numerical approach. A&A 191, 385 (1988)

    Google Scholar 

  58. R.H. Rand: Topics in Nonlinear Dynamics with Computer Algebra, (Gordon and Breach Science Publishers 1994)

    Google Scholar 

  59. A.E. Roy: Orbital Motion, (Adam Hilger, Bristol and Philadelphia 1988)

    Google Scholar 

  60. Z. Sándor, B. Érdi, A. Széll and B. Funk: The Relative Lyapunov Indicator: An Efficient Method of Chaos Detection. CMDA 90, 127 (2004)

    Article  ADS  MATH  Google Scholar 

  61. Ch. Skokos and A. Dokoumetzidis: Effective stability of the Trojan asteroids. A&A 367 729 2001

    Article  ADS  Google Scholar 

  62. K. Stumpff: Himmelsmechanik I, Das Zweikärperproblem und die Methoden der Bahnbestimmung der Planeten und Kometen, (VEB, Deutscher Verlag der Wissenschaften, Berlin 1959)

    Google Scholar 

  63. K. Stumpff: Himmelsmechanik II, Das Dreikärperproblem, (VEB, Deutscher Verlag der Wissenschaften, Berlin 1965)

    Google Scholar 

  64. K. Stumpff and J. Meffroy: Himmelsmechanik III, Allgemeine Stärungen, (VEB, Deutscher Verlag der Wissenschaften, Berlin 1974)

    Google Scholar 

  65. A. Säli, B. Èrdi and Andras Pál: A New Method to Determine the Derivatives of the Laplace Coefficients. CMDA 88, 259 (2004)

    Article  ADS  Google Scholar 

  66. V. Szebehely: Theory of Orbits, The Restricted problem of Three Bodies, (Academic Press, 1967)

    Google Scholar 

  67. M. Thiel, M.C. Romano and J. Kurths: Applied Nonlinear Dynamics 11, N3

    Google Scholar 

  68. M. Thiel, M.C. Romano, J. Kurths and P. Read: Chaos (in press)

    Google Scholar 

  69. K. Tsiganis, R. Dvorak and E. Pilat-Lohinger: Thersites: a `jumping' Trojan? A&A 354, 1091 (2000)

    ADS  Google Scholar 

  70. K. Tsiganis, H. Varvoglis and R. Dvorak: Chaotic Diffusion and Effective Stability of Jupiter Trojans, CMDA, in press (2005)

    Google Scholar 

  71. S. Ulam: In: Proceedings of the 4th Berkely Symp. on Math. Stat. and Probability (University of California Press 1961), p. 315

    Google Scholar 

  72. J.P. van der Weele, H.W. Capel, T.P. Valkering and T. Post: The squeeze effect in non-integrable Hamiltonian systems, Physica A, 147, 499 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  73. H. Varvoglis, K. Tsiganis and J.D. Hadjidemetriou: The “Third” Integral in the Restricted Three-Body Problem Revisited. In: Galaxies and Chaos ed by G. Contopoulos and N. Voglis, Lect. Notes Phys. 626, 433 (2003)

    ADS  Google Scholar 

  74. H. Varvoglis, Ch. Vozikis and K. Wodnar: The Two Fixed Centers: An Exceptional Integrable System. CMDA 89, 343 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. K. Wodnar: New formulations of the Sitnikov Problem, In: {Predictibility, Stability and Chaos in N-Body Dynamical Systems} ed by A. Roy, (Plenum Press, New York 1992), 457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudolf Dvorak Florian Freistetter Jürgen Kurths

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Dvorak, R., Freistetter, F. Orbit Dynamics, Stability and Chaos in Planetary Systems. In: Dvorak, R., Freistetter, F., Kurths, J. (eds) Chaos and Stability in Planetary Systems. Lecture Notes in Physics, vol 683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10978337_1

Download citation

  • DOI: https://doi.org/10.1007/10978337_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28208-2

  • Online ISBN: 978-3-540-34556-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics