Skip to main content
Log in

Drone Based Fluorescence LIDAR for Agriculture Fields in Situ Diagnostics

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Ultracompact (~300 g) fluorescence LIDAR is developed to be installed on a small drone for remote sensing of agricultural fields. The LIDAR is based on a diode laser (405 nm, 150 mW) and a mini spectrometer allows reducing the device sizes and power consumptions for its placing on small aircraft drones. For field testing, the LIDAR was placed on a quadcopter for remote sensing of plants in maize field. Field testes proved the feasibility and perspectives of autonomous LIDAR sensing from drones for early detection and field locations with plants under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Measures, R.M., Laser Remote Sensing: Fundamentals and Applications, New York: Wiley, 1984.

    Google Scholar 

  2. Bunkin, A. and Voliak, K., Laser Remote Sensing of the Ocean: Methods and Applications, New York: Wiley, 2001.

    Google Scholar 

  3. Bunkin, A.F. and Surovegin, A.L., Remote detection of chlorophyll using the laser-induced fluorescence method, Okeanologiya, 1986, vol. 26, pp. 532–536.

    Google Scholar 

  4. Bunkin, A.F., Rezov, A.V., and Tsipenyuk, D.Y., Remote element analysis of matters under natural conditions via helicopter-mounted laser complex, Zh. Tekh. Fiz., 1994, vol. 64, pp. 195–200.

    Google Scholar 

  5. Bunkin, A.F., Vlasov, D.V., Mirkamilov, D.M., and Slobodianin, V.P., On the laser airborn remote-sensing of oceanic turbidity and mapping of phytoplankton distribution, Dokl. Akad. Nauk SSSR, 1984, vol. 279, pp. 335–337.

    Google Scholar 

  6. Chappelle, E.W., Wood, F.M., McMurtrey, J.E., and Newcomb, W.W., Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation, Appl. Opt., 1984, vol. 23, pp. 134—138. https://doi.org/10.1364/AO.23.000134

    Article  ADS  Google Scholar 

  7. Jin, S., Sun, X., Wu, F., Su, Y., Li, Y., Song, S., Xu, K., Ma, Q., Baret, F., Jiang, D., Ding, Y., and Guo, Q., Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future prospects, ISPRS J. Photogramm. Remote Sens., 2021, vol. 171, pp. 202–223. https://doi.org/10.1016/j.isprsjprs.2020.11.006

    Article  ADS  Google Scholar 

  8. Fadeev, V.V., Examination of the possibility of LIDAR measurements of stratospheric ozone density, Kvant. Elektron., 1976, vol. 3, pp. 2392–2398.

    Google Scholar 

  9. Bezotosnyi, V.V., Gorbunkov, M.V., Koromyslov, A.L., Pevtsov, V.F., Popov, Y.M., Tunkin, V.G., and Cheshev, E.A., Dual-wavelength generation at the transverse mode locking in a diode-end-pumped passively Q-switched Nd:YLF/Cr4+:YAG laser, Bull. Lebedev Phys. Inst., 2017, vol. 44, pp. 1–4. https://doi.org/10.3103/S1068335617010018

    Article  ADS  Google Scholar 

  10. Panday, U.S., Pratihast, A.K., Aryal, J., and Kayastha, R.B., A review on drone-based data solutions for cereal crops, Drones, 2020, vol. 4, no. 3, p. 41. https://doi.org/10.3390/drones4030041

    Article  Google Scholar 

  11. Christiansen, M.P., Laursen, M.S., Jørgensen, R.N., Skovsen, S., and Gislum, R., Designing and testing an UAV mapping system for agricultural field surveying, Sensors, 2017, vol. 17, no. 12, p. 2103. https://doi.org/10.3390/s17122703

    Article  Google Scholar 

  12. Grishin, M.Y., Lednev, V.N., Sdvizhenskii, P.A., Pavkin, D.Y., Nikitin, E.A., Bunkin, A.F., and Pershin, S.M., Lidar monitoring of moisture in biological objects, Dokl. Phys., 2021, vol. 66, pp. 273–276. https://doi.org/10.1134/S1028335821100050

    Article  ADS  Google Scholar 

  13. Pershin, S.M., Bunkin, A.F., Klinkov, V.K., Lednev, V.N., Lushnikov, D., Morozov, E.G., Yul’metov, R.N., and Yul’metov, R.N., Remote sensing of Arctic Fjords by Raman LIDAR: Heat transfer screening by layer of glacier’s relict water, Phys. Wave Phenom., 2012, vol. 20, pp. 212–222. https://doi.org/10.3103/S1541308x12030090

    Article  ADS  Google Scholar 

  14. Myasnikov, A.V., Pershin, S.M., Grishin, M.Y., Zavozin, V.A., Makarov, V.S., and Ushakov, A.A., Estimation of the influence of meteorological factors on the aerosol lidar signal in tunnels above the Elbrus Volcano Chamber, Phys. Wave Phenom., 2022, vol. 30, pp. 119–127. https://doi.org/10.3103/S1541308X22020054

    Article  ADS  Google Scholar 

  15. Pershin, S.M., Sobisevich, A.L., Zavozin, V.A., Grishin, M.Y., Lednev, V.N., Makarov, V.S., Petkov, V.B., Ponurovskii, Y.Y., Fedorov, A.N., and Artemova, D.G., LIDAR detection of aerosols in the tunnel above the Elbrus Volcano Chamber, Bull. Lebedev Phys. Inst., 2022, vol. 49, pp. 36–41. https://doi.org/10.3103/S1068335622020063

    Article  ADS  Google Scholar 

  16. Pershin, S.M., Sobisevich, A.L., Grishin, M.Y., Gravirov, V.V., Zavozin, V.A., Kuzminov, V.V., Lednev, V.N., Likhodeev, D.V., Makarov, V.S., Myasnikov, A.V., and Fedorov, A.N., Volcanic activity monitoring by unique LIDAR based on a diode laser, Laser Phys. Lett., 2020, vol. 17, p. 115607. https://doi.org/10.1088/1612-202x/abbedc

  17. Pershin, S.M., Grishin, M.Y., Zavozin, V.A., Kuzminov, V.V., Lednyov, V.N., Makarov, V.S., Myasnikov, A.V., Tyurin, A.V., Fedorov, A.N., and Petkov, V.B., Lidar sensing of multilayer fog evolution in the inclined tunnel of the Baksan Neutrino Observatory, Bull. Lebedev Phys. Inst., 2019, vol. 46, pp. 328–332. https://doi.org/10.3103/S1068335619100075

    Article  ADS  Google Scholar 

  18. Tsouros, D.C., Bibi, S., and Sarigiannidis, P.G., A review on UAV-based applications for precision agriculture, Information., 2019, vol. 10, p. 349.

    Article  Google Scholar 

  19. Grishin, M.Y., Lednev, V.N., Pershin, S.M., and Kapralov, P.O., Ultracompact fluorescence lidar based on a diode laser (405 nm, 150 mW) for remote sensing of waterbodies and the underlying surface from unmanned aerial vehicles, Dokl. Phys., 2021, vol. 66, pp. 153–155. https://doi.org/10.1134/S1028335821060057

    Article  ADS  Google Scholar 

  20. Kurbanov, R. and Litvinov, M., Development of a gimbal for the Parrot Sequoia multispectral camera for the UAV DJI Phantom 4 Pro, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 1001, p. 12062. https://doi.org/10.1088/1757-899X/1001/1/012062

  21. Polukhin, A.A., Litvinov, M.A., Kurbanov, R.K., and Klimova, S.P., Development of the Parrot Sequoia Multispectral Camera Mount for the DJI Inspire 1 UAV, in Popkova, E.G. and Sergi, B.S. Eds., Smart Innovation in Agriculture. Smart Innovation, Systems and Technologies, vol. 264, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-7633-8_24

    Book  Google Scholar 

  22. Cerovic, Z.G., Samson, G., Morales, F., Tremblay, N., and Moya, I., Ultraviolet-induced fluorescence for plant monitoring: present state and prospects, Agronomie, 1999, vol. 19, pp. 543–578.

    Article  Google Scholar 

  23. Karavaev, V.A., Kalmatskaya, O.A., Trubitsin, B.V., and Tiknonov, A.N., Thermoluminescence and diagnostics of the state of photosynthetic apparatus of plant leaves, Biophysics, 2022, vol. 67, pp. 413–418. https://doi.org/10.1134/S0006350922030071

    Article  Google Scholar 

  24. Kalmatskaya, O.A., Karavaev, V.A., Cherenkov, A.A., and Gunar, L.E., Luminescent and physiological indices of potato after the treatment of tubers with growth regulators, Saratov Fall Meeting 2020: Optical and Nanotechnologies for Biology and Medicine, Proc. SPIE, 2021, vol. 11845, pp. 115–120. https://doi.org/10.1117/12.2590846

    Article  Google Scholar 

  25. Kalmatskaya, O.A., Trubitsin, B.V., Suslichenko, I.S., Karavaev, V.A., and Tikhonov, A.N., Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies, Photosynth. Res., 2020, vol. 146, pp. 123–141.

    Article  Google Scholar 

  26. Kalmatskaya, O.A., Karavaev, V.A., and Tikhonov, A.N., Slow induction of chlorophyll a fluorescence excited by blue and red light in Tradescantia leaves acclimated to high and low light, Photosynth. Res., 2019, vol. 142, pp. 265–282.

    Article  Google Scholar 

  27. Lichtenthaler, H.K. and Rinderle, U., The role of chlorophyll fluorescence in the detection of stress conditions in plants, CRC Crit. Rev. Anal. Chem., 1988, vol. 19, pp. S29–S85. https://doi.org/10.1080/15476510.1988.10401466

    Article  Google Scholar 

  28. Ciganda, V., Gitelson, A., and Schepers, J., Non-destructive determination of maize leaf and canopy chlorophyll content, J. Plant Physiol., 2009, vol. 166, pp. 157–167.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2022-315 for the development and advancement of world-level scientific centers “Photonics Center.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Lednev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lednev, V.N., Grishin, M.Y., Sdvizhenskii, P.A. et al. Drone Based Fluorescence LIDAR for Agriculture Fields in Situ Diagnostics. Bull. Lebedev Phys. Inst. 50, 103–107 (2023). https://doi.org/10.3103/S1068335623030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623030065

Keywords:

Navigation