Skip to main content
Log in

Numerical Analysis of All-Optical Binary to Gray Code Converter Using Silicon Microring Resonator

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

Present manuscript designs and analyzes numerically all-optical binary-to-gray code (BTGC) converter utilizing silicon microring resonator. A waveguide-based silicon microring resonator has been employed to achieve optical switching under low-power conditions using the two-photon absorption effect. Gray code (GC) is a binary numerical system in which two consecutive codes distinguished by only one bit. The GC is critical in optics communication because it prevents spurious output from optical switches and facilitates error correction in optical communications. MATLAB is used to design and analyze the architecture at almost 260 Gbps operational speed. The faster response times and compact design of the demonstrated circuits make them especially useful for optical communication systems. Performance indicating factors evaluated from MATLAB results and analyzed. Design parameters that are optimized have been chosen in order to construct the model practically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Zhang, L., Ji, R., Jia, L., Yang, L., Zhou, P., Tian, Y., Chen, P., Lu, Y., Jiang, Z., Liu, Y., and Fang, Q., Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators, Opt. Lett., 2010, vol. 35, no. 10, pp.1620–1622 (2010).

  2. Singh, M.P., Rakshit, J.K., and Hossain, M., Design of polarization conversion and rotation based ternary logic AND/NAND, OR/NOR, Ex-OR/Ex-NOR gates using ring resonator, Opt. Quantum Electron., 2021, vol. 53, no. 12, p. 703.

    Article  Google Scholar 

  3. Kundu, S., Hossain, M., and Mandal, S., Design and analysis of all-optical carry lookahead adder using microring resonator in Z-domain, Opt. Eng., 2024, vol. 63, no. 1, pp. 018102–018102.

    Article  Google Scholar 

  4. Yadav, A., Kumar, A., and Prakash, A., Design and analysis of all-optical half and full adder/subtractor using nonlinear asymmetric directional couplers, Optik, 2023, vol. 288, p. 171190.

    Article  Google Scholar 

  5. Rakshit, J.K. and Roy, J.N., All-optical ultrafast switching in a silicon microring resonator and its application to design multiplexer/demultiplexer, adder/subtractor and comparator circuit, Opt. Appl., 2016, vol. 46, no. 4, pp. 517–539.

    Google Scholar 

  6. Zoiros, K.E., Houbavlis, T., and Kalyvas, M., Ultra-high speed all-optical shift registers and their applications in OTDM networks, Opt. Quantum Electron., 2004, vol. 36, pp. 1005–1053.

    Article  Google Scholar 

  7. Hossain, M. and Rakshit, J.K., Implementation of all-optical synchronous and asynchronous binary up counters using silicon micro-ring resonator, Opt. Eng., 2022, vol. 61, no. 10, pp. 105105–105105.

    Article  Google Scholar 

  8. Saranya, D. and Shankar, T., Design of an all optical encoder/decoder using cross-layered2D PCRR, Optik, 2021, vol. 231, p. 166387.

    Article  Google Scholar 

  9. Fakouri-Farid, V. and Andalib, A., Design and simulation of an all optical photonic crystal-based comparator, Optik, 2018, vol. 172, pp. 241–248.

    Article  Google Scholar 

  10. Kumar, A. and Raghuwanshi, S.K., Implementation of optical gray code converter and even parity checker using the electro-optic effect in the Mach–Zehnder interferometer, Opt. Quantum Electron., 2015, vol. 47, pp. 2117–2140.

    Article  Google Scholar 

  11. Qiu, C., Zhang, C., Zeng, H., and Guo, T., High-performance graphene-on-silicon nitride all-optical switch based on a Mach–Zehnder interferometer, J. Lightwave Technol., 2020, vol. 39, no. 7, pp. 2099–2105.

    Article  Google Scholar 

  12. Raja, A., Mukherjee, K., and Roy, J.N., Design analysis and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch, J. Comput. Electron., 2021, vol. 20, pp. 387–396.

    Article  Google Scholar 

  13. Mukherjee, K., Design and analysis of all optical frequency encoded X-OR and X-NOR gate using quantum dot semiconductor optical amplifier-Mach Zehnder Interferometer, Opt. Laser Technol., 2021, vol. 140, p. 107043.

    Article  Google Scholar 

  14. Maji, K., Mukherjee, K., and Mandal, M.K., All optical comparator using tera hertz optical asymmetric demultiplexer (TOAD), J. Nonlinear Opt. Phys. Mater., 2023, vol. 32, no. 04, p. 2350034.

    Article  Google Scholar 

  15. Gosciniak, J., Hu, Z., Thomaschewski, M., Sorger, V.J., and Khurgin, J.B., Bistable All-Optical Devices Based on Nonlinear Epsilon-Near-Zero (ENZ) Materials, Laser Photon. Rev., 2023, vol. 17, no. 4, p. 2200723.

    Article  Google Scholar 

  16. Rakshit, J.K., Singh, M.P., Hossain, M., and Roy, J.N., Polarization rotation based all-optical ternary half-adder and full-adder: design and analysis using micro-ring resonator, Opt. Quantum Electron., 2022, vol. 54, no. 2, p. 128.

    Article  Google Scholar 

  17. Hossain, M., Mondal, K., Kumar, D., Rakshit, J.K., and Mandal, S., Design and study of silicon microring resonator based all-optical binary-coded decimal adder, Opt. Quantum Electron., 2023, vol. 55, no. 12, p. 1100.

    Article  Google Scholar 

  18. Kumar, A., Kumar, M., Jindal, S.K., Raghuwanshi, S.K., and Choudhary, R., Implementation of all-optical 1× 4 memory register unit using the micro-ring resonator structures, Opt. Quantum Electron., 2021, vol. 53, pp. 1–35.

    Article  Google Scholar 

  19. Choure, K.K., Saharia, A., Mudgal, N., Pandey, R., Agarwal, A., Prajapat, M., Maddila, R., Tiwari, M., and Singh, G., Reconfigurable and compact reversible channel multiplexers using Si3N4 based optical microring resonator, Opt. Commun., 2023, vol. 530, p. 129126.

    Article  Google Scholar 

  20. Singh, M.P., Hossain, M., Rakshit, J.K., Bharti, G.K., and Roy, J.N., Proposal for polarization rotation–based ultrafast all optical switch in ring resonator, Braz. J. Phys., 2021, vol. 51, no. 6, pp. 1763–1774.

    Article  Google Scholar 

  21. Anagha, E.G. and Jeyachitra, R.K., Investigations on all-optical binary to gray and gray to binary code converters using 2D photonic crystals, IEEE J. Quantum Electron., 2021, vol. 57, no. 6, pp. 1–10.

    Article  Google Scholar 

  22. Singh, J.J., Dhawan, D., and Gupta, N., An investigation of an ultrafast 3-bit all-optical binary to gray and gray to binary code converters based on an interference effect in 2D photonic crystal platform, Opt. Quantum Electron., 2024, vol. 56, no. 3, p. 344.

    Article  Google Scholar 

  23. Little, B.E., Chu, S.T., Pan, W., Ripin, D., Kaneko, T., Kokubun, Y., and Ippen, E., Vertically coupled glass microring resonator channel dropping filters, IEEE Photon. Technol. Lett., 1999, vol. 11, no. 2, pp. 215–217.

    Article  Google Scholar 

  24. Gan, L. and Li, Z., Photonic crystal cavities and integrated optical devices, Sci. China Phys., Mech. Astron., 52015, vol. 8, pp. 1–12.

  25. Garai, S.K., Method of all-optical frequency encoded decimal to binary and binary coded decimal, binary to gray, and gray to binary data conversion using semiconductor optical amplifiers, Appl. Opt., 2011, vol. 50, no. 21, pp. 3795–3807.

    Article  Google Scholar 

  26. Kundu, S., Hossain, M., and Mandal, S., Modeling of silicon microring resonator-based programmable logic device for various arithmetic and logic operation in Z-domain, Opt. Quantum Electron., 2023, vol. 55, no. 2, p. 175.

    Article  Google Scholar 

  27. Katti, R. and Prince, S., Ultrafast optical binary to gray code and gray to binary code conversion based on phase modulation in Mach–Zehnder interferometer, Opt. Eng., 2017, vol. 56, no. 2, pp. 025101–025101.

    Article  Google Scholar 

  28. Kumari, A., Pal, A., Singh, A., and Sharma, S., All-optical binary to gray code converter using non-linear material based MIM waveguide, Optik, 2020, vol. 200, p. 163449.

    Article  Google Scholar 

  29. Bharti, G.K. and Rakshit, J.K., Design and performance analysis of high speed optical binary code converter using micro-ring resonator, Fiber Integr. Opt., 2018, vol. 37, no. 2, pp. 103–121.

    Article  Google Scholar 

  30. Godbole, A., Dali, P.P., Singh, G., and Tanabe, T., Microring resonator based all optical XOR and XNOR logic gates, in 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), IEEE, 2016, pp. 540–543.

  31. Soref, R., The past, present, and future of silicon photonics, IEEE J. Sel. Top. Quantum Electron., 2006, vol. 12, no. 6, pp. 1678–1687.

    Article  Google Scholar 

  32. Mondal, K., Samad, A., Nagaraju, V., Basha, S.M., and Hossain, M., Modeling of binary coded decimal to seven segment display decoder using silicon microring resonator-based programmable logic device, J. Opt., 2024, pp. 1–12.

  33. Xu, Q. and Lipson, M., All-optical logic based on silicon micro-ring resonators, Opt. Express, 2007, vol. 15, no. 3, pp. 924–929.

    Article  Google Scholar 

  34. Jain, R.P., Modern digital Electronics, 3rd ed., New Delhi: Tata McGraw-Hill Education, 2003.

    Google Scholar 

  35. Hossain, M., Rakshit, J.K., and Zoiros, K.E., Microring resonator-based all-optical parallel pseudo random binary sequence generator for rate multiplication, Opt. Quantum Electron., 2022, vol. 54, no. 8, p. 525.

    Article  Google Scholar 

  36. Bharti, G.K. and Sonkar, R.K., Design and performance analysis of all-optical D and T flip-flop in a polarization rotation based micro-ring resonator, Opt. Quantum Electron., 2022, vol. 54, no. 3, p. 176.

    Article  Google Scholar 

  37. Agazzi, L., Bradley, J.D., Dijkstra, M., Ay, F., Roelkens, G., Baets, R., Wörhoff, K., and Pollnau, M., Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides, Opt. Express, 2010, vol. 18, no. 26, pp. 27703–27711.

    Article  Google Scholar 

  38. Deslandes, P., Perrin, M., Saby, J., Sangla, D., Salin, F., and Freysz, E., Picosecond to femtosecond pulses from high power self mode–locked ytterbium rod-type fiber laser, Opt. Express, 2013, vol. 21, no. 9, pp. 10731–10738.

    Article  Google Scholar 

  39. Duan, L., Dagenais, M., and Goldhar, J., Smoothly wavelength-tunable picosecond pulse generation using a harmonically mode-locked fiber ring laser, J. Lightwave Technol., 2003, vol. 21, no. 4, p. 930.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Manjur Hossain—Methodology, implementation, simulation and writing original draft preparation.

Kalimuddin Mondal—Conceptualization, supervision, reviewing and editing the draft manuscript.

Corresponding author

Correspondence to Kalimuddin Mondal.

Ethics declarations

CONSENT FOR PUBLICATION

All authors are agreed and gave their consent for the publication of this research paper.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

DATA AND MATERIALS AVAILABILITY

Not Applicable.

CODE AVAILABILITY

Not Applicable.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjur Hossain, Kalimuddin Mondal Numerical Analysis of All-Optical Binary to Gray Code Converter Using Silicon Microring Resonator. Opt. Mem. Neural Networks 33, 193–204 (2024). https://doi.org/10.3103/S1060992X24700085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X24700085

Keywords:

Navigation