Skip to main content
Log in

Seasonal Features of the Spatial Distribution of Atmospheric Gravity Waves in the Earth’s Polar Thermosphere

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

The features of the spatial distribution of atmospheric gravity waves (AGW) in the polar thermosphere of the Earth are investigated. The research is based on data from direct satellite measurements of the parameters of the neutral atmosphere. According to satellite data, the amplitudes of AGWs that are systematically observed in the polar regions of both hemispheres are usually several times higher than the amplitudes of these waves in the middle and low latitudes. At the same time, the polar AGWs of large amplitudes are recorded against the background of high-speed spatially inhomogeneous wind flows, which indicates their possible amplification caused by interaction with the wind. Based on the analysis of measurement data on the Dynamics Explorer 2 satellite, the relationship between the spatial distribution of the atmospheric gravitational waves and the auroral oval has been revealed. On a large volume of experimental data, seasonal patterns of the distribution of the wave field over the Antarctic and the Arctic have been established. A comparative analysis of the features of the AGWs in the polar thermosphere of both hemispheres for the conditions of the polar day and polar night has been carried out. Some differences in the distribution of the AGWs were noted depending on the Kp-index. It has been suggested that the observed seasonal features of the AGW distribution and its dependence on the level of geomagnetic activity are associated with the restructuring of the polar wind circulation when the conditions of solar illumination and geomagnetic conditions change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. K. Edemskii and A. S. Yasyukevich, “Observing wave packets generated by solar terminator in TEC during typhoons,” Soln.-Zemn. Fiz. 4 (2), 33–40 (2018). https://doi.org/10.12737/szf-42201806

    Article  Google Scholar 

  2. Yu. P. Ladikov-Roev, O. K. Cheremnykh, A. K. Fedorenko, and V. E. Nabivach, “Acoustic-gravity waves in whirling polar atmosphere,” Probl. Upr. Inf., No. 5, 74–84 (2015).

  3. A. A. Sopin, Yu. M. Yampol’skii, V. V. Paznukhov, et al., “Ionospheric response to AGW propagation detected using GNSS measurements and coherent HF sounding over “Vernadsky” and “Palmer” Antarctic stations,” Ukr. Antarkt. Zh. 15, 50–59 (2016).

    Google Scholar 

  4. A. K. Fedorenko, A. V. Bespalova, I. T. Zhuk, and E. I. Kryuchkov, “Latitude variability of acoustic-gravity waves in the upper atmosphere based on satellite data,” Geomagn. Aeron. (Engl. Transl.) 57, 471–481 (2017). https://doi.org/10.1134/S0016793217030057

  5. A. K. Fedorenko and E. I. Kryuchkov, “Distribution of medium-scale acoustic gravity waves in polar regions according to satellite measurement data,” Geomagn. Aeron. (Engl. Transl.) 51, 520–533 (2011). https://doi.org/10.1134/S0016793211040128

  6. A. K. Fedorenko and E. I. Kryuchkov, “Observed features of acoustic gravity waves in the heterosphere,” Geomagn. Aeron. (Engl. Transl.) 54, 116–123 (2014). https://doi.org/10.1134/S0016793214010022

  7. L. F. Chernogor and Yu. B. Milovanov, “Dynamic falling of the Chelyabinsk meteoroid: Sizes, radiation, and destruction,” Kinematics Phys. Celestial Bodies 37, 241–262 (2021).

    Article  ADS  Google Scholar 

  8. O. Agapitov and O. K. Sheremnykh, “Natural oscillations of the Earth magnetosphere associated with solar wind sudden impulses,” Ukr. J. Phys. 53, 508–512 (2008).

    Google Scholar 

  9. T. Beer, Atmospheric Waves (Wiley, New York, 1974).

    Google Scholar 

  10. A. V. Bespalova, A. K. Fedorenko, O. K. Cheremnykh, and I. T. Zhuk, “Satellite observations of wave disturbances caused by moving solar terminator,” J. Atmos. Sol.-Terr. Phys. 140, 79–85 (2016). https://doi.org/10.1016/j.jastp.2016.02.012

    Article  ADS  Google Scholar 

  11. H. T. Cai, F. Yin, S. Y. Ma, and I. W. McCrea, “Observations of AGW/TID propagation across the polar cap: a case study,” Ann. Geophys. 29, 1355–1363 (2011). https://doi.org/10.5194/angeo-29-1355-2011

    Article  ADS  Google Scholar 

  12. G. R. Carignan, B. P. Block, J. C. Maurer, A. E. Hedin, C. A. Reber, and N. W. Spencer, “The neutral mass spectrometer on Dynamics Explorer,” Space Sci. Instrum. 5, 429 (1981).

    ADS  Google Scholar 

  13. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, and Y. A. Selivanov, “Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth’s and solar atmospheres,” Ann. Geophys. 37, 405–415 (2019). https://doi.org/10.5194/angeo-37-405-2019

    Article  ADS  Google Scholar 

  14. O. K. Cheremnykh and A. S. Parnowski, “Influence of ionospheric conductivity on the ballooning modes in the inner magnetosphere of the Earth,” Adv. Space Res. 37, 599–603 (2006).

    Article  ADS  Google Scholar 

  15. L. F. Chernogor, K. P. Garmash, Q. Guo, V. T. Rozumenko, Y. Zheng, and Y. Luo, “Supertyphoon Hagibis action in the ionosphere on 6–13 October 2019: Results from multi-frequency multiplepath sounding at oblique incidence,” Adv. Space Res. 67, 2439–2469 (2021). https://doi.org/10.1016/j.asr.2021.01.038

    Article  ADS  Google Scholar 

  16. J. J. Dudis and C. A. Reber, “Composition effects in thermospheric gravity waves,” Geophys. Res. Lett. 3, 727–730 (1976).

    Article  ADS  Google Scholar 

  17. A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh, Yu. O. Klymenko, and Yu. M. Yampolski, “Peculiarities of acousticgravity waves in inhomogeneous flows of the polar thermosphere,” J. Atmos. Sol.-Terr. Phys. 178, 17–23 (2018). https://doi.org/10.1016/j.jastp.2018.05.009

    Article  ADS  Google Scholar 

  18. T. J. Fitzgerald, “Observations of total electron content perturbations on GPS signals caused by a ground level explosion,” J. Atmos. Sol.-Terr. Phys. 59, 829–834 (1997).

    Article  ADS  Google Scholar 

  19. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978), in Ser.: Developments in Atmospheric Science, Vol. 2.

  20. Q. Guo, L. F. Chernogor, K. P. Garmash, V. T. Rozumenko, and Y. Zheng, “Radio monitoring of dynamic processes in the ionosphere over China during the partial solar eclipse of 11 August 2018,” Radio Sci. 55, e2019RS006866 (2020). https://doi.org/10.1029/2019RS006866

  21. K. Hocke and K. Schlegel, “A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995,” Ann. Geophys. 14, 917–940 (1996).

    ADS  Google Scholar 

  22. R. Hunsucker, “Atmospheric gravity waves generated in the high-latitude ionosphere: A review,” Rev. Geophys. Space Phys. 20, 293–315 (1982).

    Article  ADS  Google Scholar 

  23. J. L. Innis and M. Conde, “Characterization of acoustic–gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data,” J. Geophys. Res.: Space Phys. 107, A12 (2002). https://doi.org/10.1029/2002JA009370

    Article  Google Scholar 

  24. F. S. Johnson, W. B. Hanson, R. R. Hodges, W. R. Coley, G. R. Carignan, and N. W. Spencer, “Gravity waves near 300 km over the polar caps,” J. Geophys. Res.: Space Phys. 100, 23993–24002 (1995).

    Article  ADS  Google Scholar 

  25. T. L. Killeen, Y.-I. Won, R. J. Nicieyewski, and A. G. Burns, “Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic fields dependencies,” J. Geophys. Res.: Space Phys. 100, 21327–21342 (1995).

    Article  ADS  Google Scholar 

  26. H. Lühr, S. Rentz, P. Ritter, H. Liu, and K. Häusler, “Average thermospheric wind pattern over the polar regions, as observed by CHAMP,” Ann. Geophys. 25, 1093–1101 (2007). https://www.ann-geophys.net/25/1093/2007.

    Article  ADS  Google Scholar 

  27. R. Plougonven and F. Zhang, “Internal gravity waves from atmospheric jets and fronts,” Rev. Geophys. 52, 1–37 (2014).

    Article  Google Scholar 

  28. S. Pulinets and K. Boyarchuk, Ionospheric Precursors of Earthquakes (Springer-Verlag, Berlin, 2004).

    Google Scholar 

  29. A. Roy, S. Roy, and A. P. Misra, “Dynamical properties of acoustic-gravity waves in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 186, 78–81 (2019).

    Article  ADS  Google Scholar 

  30. S.-R. Zhang, P. J. Erickson, A. J. Coster, et al., “Subauroral and polar traveling ionospheric disturbances during the 7-9 September 2017 storms,” Space Weather 17, 1748–1764 (2019). https://doi.org/10.1029/2019SW002325

    Article  ADS  Google Scholar 

Download references

FUNDING

The work was supported by the National Research Foundation of Ukraine, project 2020.02/0015 “Theoretical and Experimental Studies of Global Disturbances of Natural and Technogenic Origin in the Earth-Atmosphere-Ionosphere System.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Vlasov.

Additional information

Translated by T. N. Sokolova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, D.I., Fedorenko, A.K., Kryuchkov, E.I. et al. Seasonal Features of the Spatial Distribution of Atmospheric Gravity Waves in the Earth’s Polar Thermosphere. Kinemat. Phys. Celest. Bodies 38, 73–82 (2022). https://doi.org/10.3103/S0884591322020076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591322020076

Keywords:

Navigation