Skip to main content
Log in

Development of low-background Cs\(_2\)ZrCl\(_6\) detectors to study rare decays in Zr isotopes

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we present the first complex study of Cs\(_2\)ZrCl\(_6\) (CZC) scintillating crystals in terms of their chemical purity, crystal radiopurity, scintillating performance and pulse-shape discrimination ability. An ICP-MS measurement exhibits a high purity of the CZC material (overall impurity level less than 10 \(\mu \)g/g). The CZC crystals show a very low content of radionuclides from U/Th natural decay chains. For \(^{40}\)K and \(^{137}\)Cs only limits at the level few mBq/kg were set after more than 650 h of measurement with a high purity germanium (HPGe) detector. Nevertheless, they contained cosmogenic \(^{134}\)Cs with an activity of about 50 mBq/kg. The measurements with two CZC crystals (11 and 24 g) as scintillating detectors over 456.5 d in the low-background DAMA/CRYS facility, deep underground at LNGS, supported a substantial radiopurity of these crystals leading to a counting rate of 0.17\(_{-0.11}^{+0.13}\) (kg\(\cdot \)keV\(\cdot \)yr)\(^{-1}\) at the \(Q_{2\beta }\) of \(^{96}\)Zr (3.35  MeV). These detectors show a high particle-discrimination ability for \(\beta (\gamma )\) and \(\alpha \) particles. Limits on the half-lives of the double beta decays (DBD) of \(^{96}\)Zr and of \(^{94}\)Zr with and without neutrinos emission were also set at the level \(T_{1/2} \sim 10^{17}\)\(10^{20}\) yr (90\(\%\) C.L.). The detailed analyses of the internal background components will also be useful for further developments of Cs\(_2\)ZrCl\(_6\) low-background scintillating detectors and for the optimization of the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data produced in this study are contained in the publication.]

Notes

  1. This uncertainty is related to the used method of measurement, i.e. semi-quantitative mode, where the calibration is over a wide mass range. Better accuracy can be achieved for a certain element only with a dedicated calibration using a standard (i.e. a certified solution with a known amount of the element of interest). However, such precise calibration is typically not performed when acquiring a wide range of elements.

  2. It should be emphasized that in this work, when not differently specified, keV means keV electron equivalent.

  3. The \(\alpha /\beta \) ratio is the light yield ratio between an internal \(\alpha \) particle and an electron with the same kinetic energy of the \(\alpha \) particle. Its knowledge allows the \(\alpha \) energy scale determination from gamma energy calibration.

  4. It should be stressed, that the value of the \(\alpha /\beta \) ratio also depends on many experimental parameters. Here, to evaluate the \(\alpha /\beta \) ratio, the scintillating signals were recorded and analyzed in a 24 \(\mu \)s long time-window.

  5. Only statistical errors coming from the data fluctuations were taken into account in the estimations of the lim S values, and systematic contributions have not been included in the half-life limit values, being negligible.

References

  1. A. Giuliani et al., arXiv:1910.04688v2 [hep-ex] (2020)

  2. S.M. Bilenky, C. Giunti, Int. J. Mod. Phys. A 30, 1530001 (2015)

    Article  ADS  Google Scholar 

  3. H. Ejiri, Front. Phys. 7, 30 (2019)

    Article  Google Scholar 

  4. M. Agostini et al., Phys. Rev. Lett. 125, 252502 (2020)

    Article  ADS  Google Scholar 

  5. Majorana Coll., Phys. Rev. Lett. 130, 062501 (2023)

  6. C. Alduino et al., Phys. Rev. Lett. 120, 132501 (2018)

    Article  ADS  Google Scholar 

  7. CUORE Coll., Phys. Rev. Lett. 124, 122501 (2020)

  8. O. Azzolini et al., Phys. Rev. Lett. 123, 03250 (2019)

    Google Scholar 

  9. CUPID Coll., Phys. Rev. Lett. 129, 111801 (2022)

  10. A.S. Barabash et al., Phys. Rev. D 98, 092007 (2018)

    Article  ADS  Google Scholar 

  11. E. Armengaud et al., Phys. Rev. Lett. 126, 181802 (2021)

    Article  ADS  Google Scholar 

  12. C. Augier et al., Eur. Phys. J. C 82, 1033 (2022)

    Article  ADS  Google Scholar 

  13. V. Alenkov et al., Eur. Phys. J. C 79, 791 (2019)

    Article  ADS  Google Scholar 

  14. V. Caracciolo et al., Nucl. Phys. A 1002, 121941 (2020)

    Article  Google Scholar 

  15. S. Nagorny, Physics 3, 320 (2021)

    Article  ADS  Google Scholar 

  16. C. Cardenas et al., Nucl. Instrum. Methods A 869, 63 (2017)

    Article  ADS  Google Scholar 

  17. C. Cardenas et al., Nucl. Instrum. Methods A 872, 23 (2017)

    Article  ADS  Google Scholar 

  18. V. Mykhaylyk et al., Dalton Trans. 51, 6944–6954 (2022)

    Article  Google Scholar 

  19. M. Buryi et al., J. Mater. Chem. C 9, 2955–2968 (2021). https://doi.org/10.1039/D0TC05482H

    Article  Google Scholar 

  20. S. Keiichiro et al., Appl. Phys. Express 9, 042602 (2016)

    Article  Google Scholar 

  21. J. Argyriades et al., Nucl. Phys. A 847, 168 (2010)

    Article  ADS  Google Scholar 

  22. N. Dokania et al., J. Phys. G Nucl. Part. Phys. 45, 075104 (2018)

    Article  ADS  Google Scholar 

  23. R. Arnold et al., Nucl. Phys. A 658, 299 (1999)

    Article  ADS  Google Scholar 

  24. E. Celi et al., Eur. Phys. J. C 83, 396 (2023)

    Article  ADS  Google Scholar 

  25. C. Arpesella et al., Europhys. Lett. 27, 29–34 (1994)

    Article  ADS  Google Scholar 

  26. J.D. Vergados, H. Ejiri, F. Šimkovic, IOP 75(10), 106301 (2012)

    Google Scholar 

  27. J. Suhonen, J. Kostensalo, Front. Phys. 7, 29 (2019)

    Article  Google Scholar 

  28. J. Suhonen, Phys. Rev. C 96, 055501 (2017)

    Article  ADS  Google Scholar 

  29. P. Belli et al., Particles 4(2), 241–274 (2021)

    Article  Google Scholar 

  30. M. Laubenstein, Int. J. Mod. Phys. A 32(30), 1743002 (2017)

    Article  ADS  Google Scholar 

  31. http://www.lngs.infn.it

  32. M. Boswell et al., IEEE-NS 58(3), 1212 (2011)

    Google Scholar 

  33. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  34. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998)

    Article  ADS  Google Scholar 

  35. R. Bernabei et al., J. Inst. 7, P03009 (2012)

    ADS  Google Scholar 

  36. E. Gatti, F. De Martini, Nucl. Electron. 2, 265 (1965)

    Google Scholar 

  37. T. Fazzini et al., Nucl. Instrum. Methods A 410, 213–219 (1998)

    Article  ADS  Google Scholar 

  38. L. Bardelli et al., Nucl. Instrum. Methods A 584, 129 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bernabei.

Additional information

Communicated by Robert Janssens.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belli, P., Bernabei, R., Cappella, F. et al. Development of low-background Cs\(_2\)ZrCl\(_6\) detectors to study rare decays in Zr isotopes. Eur. Phys. J. A 59, 176 (2023). https://doi.org/10.1140/epja/s10050-023-01090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01090-9

Navigation