Skip to main content

Advertisement

Log in

Reconstruction of the molecular interactome of glutamatergic synapses

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The subunit composition of ionotropic glutamate receptors is of great significance for synapse functioning. NMDA receptors mediate fast excitatory neurotransmission and are capable of converting specific patterns of neuronal activity into long-term changes in synaptic structure and function. The principal functional properties (ion conductivity, glutamate sensitivity, agonists, and magnesium ions, and deactivation time), spatial location, membrane anchoring, and the response to pharmacological agents depend on subunit composition of the receptors. The analysis of protein–protein interactions in macrocomplexes, including NMDA receptor subunits, is an urgent task, because the results of research in this area will contribute to a better understanding of the principles and molecular mechanisms underlying the basic functions of neurons and the development of pathologies and facilitate the search for pharmacological and therapeutic targets for the correction of pathologies. The goal of the present work consisted of analyzing and reconstructing protein–protein interactions involving NMDA receptor subunits and providing for the mobility of NMDA receptors, the incorporation of these molecules into the membranes, and receptor functions related to modification and maintenance of synaptic transmission efficiency in the hippocampus. Three groups of proteins involved in the formation of NMDA receptor macrocomplexes in hippocampal glutamatergic synapses were identified. The proteins were divided into groups according to their function in the complexes; the functions were inferred from the information presented in various databases and research articles that reported gene and protein structures, expression profiles in the brain, and the role of specific genes and proteins in synaptic plasticity. Particular attention was paid to proteins for which a association with various cognitive disturbances was reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akazawa, C., Shigemoto, R., Bessho, Y., Nakanishi, S., and Mizuno, N., Differential expression of five Nmethyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats, J. Comp. Neurol., 1994, vol. 347, pp. 150–160.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, O.P., Schwab, S.G., Lautenschlager, N.T., Morar, B., Greenop, K.R., Flicker, L., and Wildenauer, D., KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment, J. Cell Mol. Med., 2008, vol. 12, no. 5, pp. 1672–1676.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arévalo, J.C., Yano, H., Teng, K.K., and Chao, M.V., A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein, EMBO J., 2004, vol. 23, no. 12, pp. 2358–2368.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arévalo, J.C., Pereira, D.B., Yano, H., Teng, K.K., and Chao, M.V., Identification of a switch in neurotrophin signaling by selective tyrosine phosphorylation, J. Biol. Chem., 2006, vol. 281, no. 2, pp. 1001–1007.

    Article  PubMed  Google Scholar 

  • Bochet, P. and Rossier, J., Molecular biology of excitatory amino acid receptors: subtypes and subunits, EXS, 1993, vol. 63, pp. 224–233.

    CAS  PubMed  Google Scholar 

  • de Bruijn, D.R., van Dijk, A.H., Pfundt, R., Hoischen, A., Merkx, G.F., Gradek, G.A., Lybæk, H., Stray-Pedersen, A., Brunner, H.G., and Houge, G., Severe progressive autism associated with two de novo changes: a 2.6-Mb2q31.1 deletion and a balanced t(14; 21)(q21.1; p11.2) translocation with long-range epigenetic silencing of LRFN5 expression, Mol. Syndromol., 2010, vol. 1, no. 1, pp. 46–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burgess, J.D., Pedraza, O., Graff-Radford, N.R., Hirpa, M., Zou, F., Miles, R., Nguyen, T., Li, M., Lucas, J.A., Ivnik, R.J., Crook, J., Pankratz, V.S., Dickson, D.W., Petersen, R.C., Younkin, S.G., and Ertekin-Taner, N., Association of common KIBRA variants with episodic memory and AD risk, Neurobiol Aging, 2011, vol. 32, no. 3, pp. 557e1–557e9. wwwncbinlmnihgov/pmc/ articles/PMC3065956/. doi: 10.1016/jneurobiolaging.2010.11.004

    Article  Google Scholar 

  • Cai, W., Hisatsune, C., Nakamura, K., Nakamura, T., Inoue, T., and Mikoshiba, K., Activity-dependent expression of inositol 1,4,5-trisphosphate receptor type 1 in hippocampal neurons, J. Biol. Chem., 2004, vol. 279, no. 22, pp. 23691–23698.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Vinade, L., Leapman, R.D., Petersen, J.D., Nakagawa, T., Phillips, T.M., Sheng, M., and Reese, T.S., Mass of the postsynaptic density and enumeration of three key molecules, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 32, pp. 11551–11556.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, X., Winters, C., Azzam, R., Li, X., Galbraith, J.A., Leapman, R.D., and Reese, T.S., Organization of the core structure of the postsynaptic density, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 11, pp. 4453–4458.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng, D., Hoogenraad, C.C., Rush, J., Ramm, E., Schlager, M.A., Duong, D.M., Xu, P., Wijayawardana, S.R., Hanfelt, J., Nakagawa, T., Sheng, M., and Peng, J., Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum, Mol. Cell Proteomics, 2006, vol. 5, no. 6, pp. 1158–1170.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H.J., Huang, Y.H., Lau, L.F., and Huganir, R.L., Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand, J. Neurosci., 2004, vol. 24, no. 45, pp. 10248–10259.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M.O., Husi, H., Yu, L., Brandon, J.M., Anderson, C.N., Blackstock, W.P., Choudhary, J.S., and Grant, S.G., Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome, J. Neurochem., 2006, vol. 97, pp. 16–23.

    Article  CAS  PubMed  Google Scholar 

  • Corneveaux, J.J., Liang, W.S., Reiman, E.M., Webster, J.A., Myers, A.J., Zismann, V.L., Joshipura, K.D., Pearson, J.V., Hu-Lince, D., Craig, D.W., Coon, K.D., Dunckley, T., Bandy, D., Lee, W., Chen, K., Beach, T.G., Mastroeni, D., Grover, A., Ravid, R., Sando, S.B., Aasly, J.O., Heun, R., Jessen, F., Kolsch, H., Rogers, J., Hutton, M.L., Melquist, S., Petersen, R.C., Alexander, G.E., Caselli, R.J., Papassotiropoulos, A., Stephan, D.A., and Huentelman, M.J., Evidence for an association between KIBRA and late-onset Alzheimer’s disease, Neurobiol. Aging, 2010, vol. 31, no. 6, pp. 901–909.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Counts, S.E., Alldred, M.J., Che, S., Ginsberg, S.D., and Mufson, E.J., Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment, Neuropharmacology, 2014, vol. 79, pp. 172–179.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cousins, S.L., Kenny, A.V., and Stephenson, F.A., Delineation of additional PSD-95 binding domains within NMDA receptor NR2 subunits reveals differences between NR2A/PSD-95 and NR2B/PSD-95 association, Neuroscience, 2009à, vol. 158, no. 1, pp. 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Cousins, S.L., Hoey, S.E., Stephenson, F.A., and Perkinton, M.S., Amyloid precursor protein 695 associates with assembled NR2A and NR2B-containing NMDA receptors to result in the enhancement of their cell surface delivery, J. Neurochem., 2009b, vol. 111, no. 6, pp. 1501–1513.

    Article  CAS  PubMed  Google Scholar 

  • Cousins, S.L., Innocent, N., and Stephenson, F.A., Neto1 associates with the NMDA receptor/amyloid precursor protein complex, J. Neurochem., 2013, vol. 126, no. 5, pp. 554–564.

    Article  CAS  PubMed  Google Scholar 

  • Deguchi, M., Hata, Y., Takeuchi, M., Ide, N., Hirao, K., Yao, I., Irie, M., Toyoda, A., and Takai, Y., BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein, J. Biol. Chem., 1998, vol. 273, no. 41, pp. 26269–26272.

    Article  CAS  PubMed  Google Scholar 

  • Deng, F., Price, M.G., Davis, C.F., Mori, M., and Burgess, D., Stargazin and other transmembrane AMPA receptor regulating proteins interact with synaptic scaffolding protein MAGI-2 in brain, J. Neurosci., 2006, vol. 26, no. 30, pp. 7875–7884.

    Article  CAS  PubMed  Google Scholar 

  • Dumas, T.C., Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning, Prog. Neurobiol., 2005, vol. 76, pp. 189–211.

    Article  CAS  PubMed  Google Scholar 

  • Ereciska, M. and Silver, I.A., Metabolism and role of glutamate in mammalian brain, Prog. Neurobiol., 1990, vol. 35, no. 4, pp. 245–296.

    Article  Google Scholar 

  • Fan, X., Jin, W.Y., and Wang, Y.T., the NMDA receptor complex: a multifunctional machine at the glutamatergic synapse, Front Cell Neurosci., 2014. wwwncbinlm. nihgov/pmc/articles/PMC4051310/pdf/fncel-08-00160. pdf. doi: 10.3389/fncel.2014.00160

    Google Scholar 

  • Galecki, P., Szemraj, J., Florkowski, A., Talarowska, M., Bienkiewicz, M., Galecka, E., and Lewinski, A., Single nucleotide polymorphism of the KIBRA gene in recurrent depressive disorders, Neuroendocrinol. Lett., 2010, vol. 31, no. 1, pp. 97–102.

    CAS  PubMed  Google Scholar 

  • Gerek, Z.N., Keskin, O., and Ozkan, S.B., Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior, Proteins, 2009, vol. 77, no. 4, pp. 796–811.

    Article  CAS  PubMed  Google Scholar 

  • Gout, I., Middleton, G., Adu, J., Ninkina, N.N., Drobot, L.B., Filonenko, V., Matsuka, G., Davies, A.M., Waterfield, M., and Buchman, V.L., Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein, EMBO J., 2000, vol. 19, no. 15, pp. 4015–4025.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamdan, F.F., Gauthier, J., and Araki, Y., Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability, Am. J. Hum. Genet., 2011, vol. 88, no. 3, pp. 306–316.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris, K.M. and Stevens, J.K., Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics, J. Neurosci., 1989, no. 9, pp. 2982–2997.

    CAS  PubMed  Google Scholar 

  • Hawley, D.F., Morch, K., and Christie, B.R., Differential response of hippocampal subregions to stress and learning, PLoS One, 2012, vol. 7, no. 12, p. e53126.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hedegaard, M., Hansen, K.B., Andersen, K.T., BraunerOsborne, H., and Traynelis, S.F., Molecular pharmacology of human NMDA receptors, Neurochem. Int., 2012, vol. 61, no. 4, pp. 601–609.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirao, K., Hata, Y., Ide, N., Takeuchi, M., Irie, M., Yao, I., Deguchi, M., Toyoda, A., Sudhof, T.C., and Takai, Y., A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins, J. Biol. Chem., 1998, vol. 273, no. 33, pp. 21105–21110.

    Article  CAS  PubMed  Google Scholar 

  • Hoe, H.S., Pocivavsek, A., Chakraborty, G., Fu, Z., Vicini, S., Ehlers, M.D., and Rebeck, G.W., Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor, J. Biol. Chem., 2006, vol. 281, no. 6, pp. 3425–3431.

    Article  CAS  PubMed  Google Scholar 

  • Husi, H. and Grant, S.G., Isolation of 2000-kDa complexes of N-methyl-D-aspartate receptor and postsynaptic density 95 from mouse brain, J. Neurochem., 2001, vol. 77, pp. 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias, T., Cabrera-Poch, N., Mitchell, M.P., Naven, T.J., Rozengurt, E., and Schiavo, G., Identification and cloning of Kidins220, a novel neuronal substrate of protein kinase D, J. Biol. Chem., 2000, vol. 275, no. 51, pp. 40048–40056.

    Article  CAS  PubMed  Google Scholar 

  • Iida, J., Hirabayashi, S., Sato, Y., and Hata, Y., Synaptic scaffolding molecule is involved in the synaptic clustering of neuroligin, Mol. Cell. Neurosci, 2004, vol. 27, no. 4, pp. 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Iida, J., Ishizaki, H., Okamoto-Tanaka, M., Kawata, A., Sumita, K., Ohgake, S., Sato, Y., Yorifuji, H., Nukina, N., Ohashi, K., Mizuno, K., Tsutsumi, T., Mizoguchi, A., Miyoshi, J., Takai, Y., and Hata, Y., Synaptic scaffolding molecule alpha is a scaffold to mediate N-methylD-aspartate receptor-dependent RhoA activation in dendrites, Mol. Cell. Biol., 2007, vol. 27, no. 12, pp. 4388–4405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaskolski, F., Martin, S., and Henley, J.M., Retaining synaptic AMPARs, Neuron, 2007, vol. 55, no. 6, pp. 825–827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johannsen, S., Duning, K., Pavenstadt, H., Kremerskothen, J., and Boeckers, T.M., Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA, Neuroscience, 2008, vol. 155, no. 4, pp. 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  • Kawata, A., Iida, J., Ikeda, M., Sato, Y., Mori, H., Kansaku, A., Sumita, K., Fujiwara, N., Rokukawa, C., Hamano, M., Hirabayashi, S., and Hata, Y., CIN85 is localized at synapses and forms a complex with S-SCAM via dendrin, J. Biochem., 2006, vol. 139, no. 5, pp. 931–939.

    Article  CAS  PubMed  Google Scholar 

  • Kiraly, D.D., Lemtiri-Chlieh, F., Levine, E.S., Mains, R.E., and Eipper, B.A., Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function, J. Neurosci., 2011, vol. 31, no. 35, pp. 12554–12565.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kjelstrup, K.B., Solstad, T., Brun, V.H., Hafting, T., Leutgeb, S., Witter, M.P., Moser, E.I., and Moser, M.B., Finite scale of spatial representation in the hippocampus, Science, 2008, vol. 321, no. 5885, pp. 140–143.

    Article  CAS  PubMed  Google Scholar 

  • Ko, J., Kim, S., Chung, H.S., Kim, K., Han, K., Kim, H., Jun, H., Kaang, B.K., and Kim, E., SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses, Neuron, 2006, vol. 50, no. 2, pp. 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Krapivinsky, G., Medina, I., Krapivinsky, L., Gapon, S., and Clapham, D.E., SynGAP-MUPP1-CAMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation, Neuron, 2004, vol. 43, no. 4, pp. 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Lau, C.G. and Zukin, R.S., NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders, Nature Rev. Neurosci., 2007, vol. 8, no. 6, pp. 413–426.

    Article  CAS  Google Scholar 

  • Lauriat, T.L., Dracheva, S., Kremerskothen, J., Duning, K., Haroutunian, V., Buxbaum, J.D., Hyde, T.M., Kleinman, J.E., and McInnes, L.A., Characterization of KIAA0513, a novel signaling molecule that interacts with modulators of neuroplasticity, apoptosis, and the cytoskeleton, Brain Res., 2006, vol. 1121, no. 1, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  • López-Menéndez, C., Gascón, S., Sobrado, M., Vidaurre, O.G., Higuero, A.M., Rodríguez-Peña, A., Iglesias, T., and Díaz-Guerra, M., Kidins220/ARMS downregulation by excitotoxic activation of NMDARs reveals its involvement in neuronal survival and death pathways, J. Cell Sci., 2009, vol. 122, no. 19, pp. 3554–3565.

    Article  PubMed  Google Scholar 

  • Lu, J., Helton, T.D., Blanpied, T.A., Racz, B., Newpher, T.M., Weinberg, R.J., and Ehlers, M.D., Postsynaptic positioning of endocytic zones and AMPA receptor cycling by physical coupling of dynamin-3 to Homer, Neuron, 2007, vol. 55, no. 6, pp. 874–889.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luján, R., Roberts, J.D., Shigemoto, R., Ohishi, H., and Somogyi, P., Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites, J. Chem. Neuroanat., 1997, vol. 13, no. 4, pp. 219–241.

    Article  PubMed  Google Scholar 

  • Makuch, L., Volk, L., Anggono, V., Johnson, R.C., Yu, Y., Duning, K., Kremerskothen, J., Xia, J., Takamiya, K., and Huganir, R.L., Regulation of AMPA receptor function by the human memory-associated gene KIBRA, Neuron, 2011, vol. 71, no. 6, pp. 1022–1029.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molnár, E., Are Neto1 and APP auxiliary subunits of NMDA receptors?, J. Neurochem., 2013, vol. 126, no. 5, pp. 551–553.

    Article  PubMed  Google Scholar 

  • Moloney, M.G., Excitatory amino acids, PLoS One, 2002, vol. 19, no. 5, pp. 597–616.

    CAS  Google Scholar 

  • Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H., Developmental and regional expression in the rat brain and functional properties of four NMDA receptors, Neuron, 1994, vol. 12, pp. 529–540.

    Article  CAS  PubMed  Google Scholar 

  • Murata, Y., Doi, T., Taniguchi, H., and Fujiyoshi, Y., Proteomic analysis revealed a novel synaptic proline-rich membrane protein (PRR7) associated with PSD-95 and NMDA receptor, Biochem. Biophys. Res. Commun., 2005, vol. 327, no. 1, pp. 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa, M., Sakimura, K., Mori, K.J., Bedell, M.A., Cope-land, N.G., Jenkins, N.A., and Mishina, M., Gene structure and chromosomal localization of the mouse NMDA receptor channel subunits, Brain. Res. Mol. Brain. Res., 1996, vol. 36, no. 1, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Nam, J., Mah, W., and Kim, E., The SALM/Lrfn family of leucine-rich repeat-containing cell adhesion molecules, Semin Cell Dev. Biol., 2011, vol. 22, no. 5, pp. 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Neill, M.J., Webber, K., Casadesus, G., Marlatt, M., Raina, A.K., Perry, G., and Smith, M.A., The role of metabotropic glutamate receptors in Alzheimer’s disease, Acta. Neurobiol. Exp. (Wars.), 2004, vol. 64, no. 1, pp. 89–98.

    Google Scholar 

  • Newpher, T.M. and Ehlers, M.D., Glutamate receptor dynamics in dendritic microdomains, Neuron, 2008, vol. 58, no. 4, pp. 472–497.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ng, D., Pitcher, G.M., Szilard, R.K., Sertie, A., Kanisek, M., Clapcote, S.J., Lipina, T., Kalia, L.V., Joo, D., McKerlie, C., Cortez, M., Roder, J.C., Salter, M.W., and McInnes, R.R., Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning, PLoS Biol., 2009, vol. 7, no. 2, pp. 0278–0300. www. plosbiologyorg/article/info%3A doi%2F10. 1371%2Fjournalpbio.1000041/. doi:10.1371/journalpbio.1000041

    Article  CAS  Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A., Magnesium gates glutamate-activated channels in mouse central neurones, Nature, 1984, vol. 307, no. 5950, pp. 462–465.

    Article  CAS  PubMed  Google Scholar 

  • Paoletti, P., Molecular basis of NMDA receptor functional diversity, Eur. J. Neurosci., 2011, vol. 33, no. 8, pp. 1351–1365.

    Article  PubMed  Google Scholar 

  • Paoletti, P., Bellone, C., and Zhou, Q., NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease, Nat. Rev. Neurosci., 2013, vol. 14, no. 6, pp. 383–400.

    Article  CAS  PubMed  Google Scholar 

  • Papouin, T. and Oliet, S.H., Organization, control and function of extrasynaptic NMDA receptors, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, vol. 369, no. 1654. http://rstbroyalsocietypublishingorg/content/369/ 1654/20130601long/. doi: 10.1098/rstb. 2013.0601

    Google Scholar 

  • Papouin, T., Ladepeche, L., Ruel, J., Sacchi, S., Labasque, M., Hanini, M., Groc, L., Pollegioni, L., Mothet, J.P., and Oliet, S.H., Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists, Cell, 2012, vol. 150, no. 3, pp. 633–646.

    Article  CAS  PubMed  Google Scholar 

  • Park, E., Na, M., Choi, J., Kim, S., Lee, J.R., Yoon, J., Park, D., Sheng, M., and Kim, E., The shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42, J. Biol. Chem., 2003, vol. 278, no. 21, pp. 19220–19229.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J., Kim, M.J., Cheng, D., Duong, D.M., Gygi, S.P., and Sheng, M., Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry, J. Biol. Chem., 2004, vol. 279, no. 20, pp. 21003–21011.

    Article  CAS  PubMed  Google Scholar 

  • Penzes, P., Johnson, R.C., Sattler, R., Zhang, X., Huganir, R.L., Kambampati, V., Mains, R.E., and Eipper, B.A., The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis, Neuron, 2001, vol. 29, no. 1, pp. 229–242.

    Article  CAS  PubMed  Google Scholar 

  • Proskura, A.L., Malakhin, I.A., Turnaev, I.I., Suslov, V.V., Zapara, T.A., and Ratushnyak, A.S., Intermolecular interactions in functional neuron systems, Vavilov. Zh. Genet. Selekts., 2013, vol. 17, no. 4/1, pp. 620–628.

    Google Scholar 

  • Racca, C., Stephenson, F.A., Streit, P., Roberts, J.D.B., and Somogyi, P., NMDA receptor content of synapses in striatum radiatum of the hippocampal CA1 area, J. Neurosci., 2000, vol. 20, no. 7, pp. 2512–2522.

    CAS  PubMed  Google Scholar 

  • Raghuram, V., Sharma, Y., and Kreutz, M.R., Ca(2+) sensor proteins in dendritic spines: a race for Ca(2+), Front. Mol. Neurosci, 2012, vol. 5, p. 61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodríguez-Rodríguez, E., Infante, J., Llorca, J., Mateo, I., Sanchez-Quintana, C., García-Gorostiaga, I., Sánchez-Juan, P., Berciano, J., and Combarros, O., Age-dependent association of KIBRA genetic variation and Alzheimer’s disease risk, Neurobiol. Aging, 2009, vol. 30, no. 2, pp. 322–324.

    Article  PubMed  Google Scholar 

  • Schito, A.M., Pizzuti, A., Di, M.E., Schenone, A., Ratti, A., Defferrari, R., Bellone, E., Mancardi, G.L., Ajmar, F., and Mandich, P., mRNA distribution in adult human brain of GRIN2B, a N-methyl-D-aspartate (NMDA) receptor subunit, Neurosci. Lett., 1997, vol. 239, no. 1, pp. 49–53.

    Article  CAS  PubMed  Google Scholar 

  • Sergeev, P.V., Shimanovskii, N.L., and Petrov, V.I., Retseptory fiziologicheski aktivnykh veshchestv (Receptors of Physiologically Active Substances), Volgograd: Sem’ vetrov, 1999.

    Google Scholar 

  • Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N., and Jan, L.Y., Changing subunit composition of heteromeric NMDA receptors during development of rat cortex, Nature, 1994, vol. 368, pp. 144–147.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi-Yamaguchi, Y., Sato, Y., Sakai, R., Mizutani, A., Knöpfe, T., Mori, N., Mikoshiba, K., and Furuichi, T., Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines, BMC Neurosci., 2009, vol. 10, p. 25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smrt, R. and Zhao, X., Epigenetic regulation of neuronal dendrite and dendritic spine development, Front. Biol., 2010, vol. 5, no. 4, pp. 304–323.

    Article  Google Scholar 

  • Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E., and Ottersen, O.P., Different modes of expression of AMPA and NMDA receptors in hippocampal synapses, Nat. Neurosci., 1999, vol. 2, no. 7, pp. 618–624.

    Article  CAS  PubMed  Google Scholar 

  • Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R., Glutamate receptor ion channels: structure, regulation, and function, Pharmacol. Rev., 2010, vol. 62, no. 3, pp. 405–496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tu, J.C., Xiao, B., Naisbitt, S., Yuan, J.P., Petralia, R.S., Brakeman, P., Doan, A., Aakalu, V.K., Lanahan, A.A., Sheng, M., and Worley, P.F., Coupling of mGluR/ Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins, Neuron, 1999, vol. 23, no. 3, pp. 583–592.

    Article  CAS  PubMed  Google Scholar 

  • Tu, H., Tang, T.S., and Wang, Z., Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A, J. Biol. Chem., 2004, vol. 279, no. 18, pp. 19375–19382.

    Article  CAS  PubMed  Google Scholar 

  • Ullmer, C., Schmuck, K., Figge, A., and Lubbert, H., Cloning and characterization of mupp1, a novel PDZ domain protein, FEBS Lett., 1998, vol. 424, nos. 1/2, pp. 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S.H., Arévalo, J.C., Sarti, F., Tessarollo, L., Gan, W.B., and Chao, M.V., Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo, Dev. Neurobiol., 2009, vol. 69, no. 9, pp. 547–557.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, H., Wang, D., Sun, H., Hall, R.A., and Yun, C.C., MAGI-3 regulates LPA-induced activation of Erk and RhoA, Cell. Signal., 2007, vol. 19, no. 2, pp. 261–268.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Proskura.

Additional information

Original Russian Text © A.L. Proskura, S.O. Vechkapova, T.A. Zapara, A.S. Ratushnyak, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/3, pp. 1205–1218.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskura, A.L., Vechkapova, S.O., Zapara, T.A. et al. Reconstruction of the molecular interactome of glutamatergic synapses. Russ J Genet Appl Res 5, 616–625 (2015). https://doi.org/10.1134/S2079059715060118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715060118

Keywords

Navigation