Skip to main content
Log in

The Interstellar Ti II Distance Scale

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We measured the equivalent widths (\(EW\)s) of interstellar Ti II absorption lines at \(\lambda\) 3383.759 for about 250 reddened objects and found a good correlation of the \(EW\)s with distances to the background stars, estimated using Gaia DR3 parallaxes. Hipparcos trigonometric parallaxes were used for very bright objects which were not observed by Gaia. The Ti II based distance estimation procedure is similar to the well known Ca II-method (Megier et al., 2005, 2009). However, there are at least 3 advantages of the Ti II method: in contrast to interstellar Ca II H and K lines, blending of Ti II with stellar lines is not an issue even for late B stars; Ti II is to a much less extent influenced by the saturation effect; only a single line must be measured, i.e. there is only a single measurement error to be taken into account. The relation of between Ti II \(EW\) and distance is given by simple equation \(d\approx 30EW\), where \(d\) is the distance in pc and \(EW\) is the equivalent width of the Ti II \(\lambda\) 3383.759 line in mÅ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. For details see https://www.eso.org/sci/facilities/paranal/ instruments/uves.html

REFERENCES

  1. T. L. Astraatmadja and C. A. L. Bailer-Jones, Astrophys. J. 833, 119 (2016).

    Article  ADS  Google Scholar 

  2. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, et al., Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  3. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, et al., Astron. J. 161, 147 (2021).

    Article  ADS  Google Scholar 

  4. C. S. Beals and J. B. Oke, Monthly Notices Royal Astron. Soc. 113, 530 (1953).

    Article  CAS  ADS  Google Scholar 

  5. R. Bernstein, S. A. Shectman, S. M. Gunnels, et al., SPIE 4841, 1694 (2003).

    ADS  Google Scholar 

  6. F. W. Bessel, Monthly Notices Royal Astron. Soc. 4, 152 (1838).

    Article  ADS  Google Scholar 

  7. M. B. Callaway, B. D. Savage, R. A. Benjamin, et al., Astrophys. J. 532, 943 (2000).

    Article  CAS  ADS  Google Scholar 

  8. H. Dekker et al., SPIE 4008, 534 (2000).

    ADS  Google Scholar 

  9. G. A. Galazutdinov, J. Korean Astron. Soc. 38, 215 (2005).

    Article  ADS  Google Scholar 

  10. G. A. Galazutdinov, Astrophysical Bulletin 77, 519 (2022).

    Article  ADS  Google Scholar 

  11. I. Hunter, J. V. Smoker, F. P. Keenan, C. Ledoux, E. Jehin, et al., Monthly Notices Royal Astron. Soc. 367, 1478 (2006).

    Article  CAS  ADS  Google Scholar 

  12. F. van Leeuwen, Astron. and Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

  13. A. Megier, A. Strobel, A. Bondar, et al., Astrophys. J. 634, 451 (2005).

    Article  CAS  ADS  Google Scholar 

  14. A. Megier, A. Strobel, G. A. Galazutdinov, and J. Krełowski, Astron. and Astrophys. 507, 833 (2009).

    Article  CAS  ADS  Google Scholar 

  15. D. Morton, Astrophys. J. Suppl. 149, 205 (2003).

    Article  CAS  Google Scholar 

  16. N. C. Sterling, B. D. Savage, P. Richter, et al., Astrophys. J. 567, 354 (2002).

    Article  ADS  Google Scholar 

  17. G. M. Stokes, Astrophys. J. Suppl. 36, 115 (1978).

    Article  CAS  Google Scholar 

  18. O. Struve, Astrophys. J. 67, 353 (1928).

    Article  ADS  Google Scholar 

  19. K. Vollmann and T. Eversberg, Astronomische Nachrichten 327, 862 (2006).

    Article  ADS  Google Scholar 

  20. B. Y. Welsh, T. Sasseen, N. Craig, et al., Astrophys. J. Suppl. 112, 507 (1997).

    Article  CAS  Google Scholar 

  21. D. E. Welty and P. A. Crowther, Monthly Notices Royal Astron. Soc. 404, 1321 (2010).

    CAS  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research has made use of the services of the ESO Science Archive Facility and the SIMBAD database, operated at CDS, Strasbourg, France (https://simbad.unistra.fr/simbad/) and partially based on observations collected at the European Southern Observatory under ESO programmes 65.I-0379 (A), 68.C-0024 (A), 078.C-0403 (A), 194.C-0833 (A), 0102.C-0699 (A), 106.20WN.001.

Funding

GAG made data processing and analysis with the aid of instruments developed at Special Astrophysical Observatory with the financial support of grant No. 075-15-2022-262 (13.MNPMU.21.0003) of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Galazutdinov, T. A. Santander, E. Babina or J. Krełowski.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galazutdinov, G.A., Santander, T.A., Babina, E. et al. The Interstellar Ti II Distance Scale. Astrophys. Bull. 78, 550–556 (2023). https://doi.org/10.1134/S1990341323700219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323700219

Keywords:

Navigation